- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Composite aggregation
editComposite aggregation
editA multi-bucket aggregation that creates composite buckets from different sources.
Unlike the other multi-bucket
aggregation the composite
aggregation can be used
to paginate all buckets from a multi-level aggregation efficiently. This aggregation
provides a way to stream all buckets of a specific aggregation similarly to what
scroll does for documents.
The composite buckets are built from the combinations of the values extracted/created for each document and each combination is considered as a composite bucket.
For instance the following document:
{ "keyword": ["foo", "bar"], "number": [23, 65, 76] }
... creates the following composite buckets when keyword
and number
are used as values source
for the aggregation:
{ "keyword": "foo", "number": 23 } { "keyword": "foo", "number": 65 } { "keyword": "foo", "number": 76 } { "keyword": "bar", "number": 23 } { "keyword": "bar", "number": 65 } { "keyword": "bar", "number": 76 }
Values source
editThe sources
parameter controls the sources that should be used to build the composite buckets.
The order that the sources
are defined is important because it also controls the order
the keys are returned.
The name given to each sources must be unique.
There are three different types of values source:
Terms
editThe terms
value source is equivalent to a simple terms
aggregation.
The values are extracted from a field or a script exactly like the terms
aggregation.
Example:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "product": { "terms" : { "field": "product" } } } ] } } } }
Like the terms
aggregation it is also possible to use a script to create the values for the composite buckets:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "product": { "terms" : { "script" : { "source": "doc['product'].value", "lang": "painless" } } } } ] } } } }
Histogram
editThe histogram
value source can be applied on numeric values to build fixed size
interval over the values. The interval
parameter defines how the numeric values should be
transformed. For instance an interval
set to 5 will translate any numeric values to its closest interval,
a value of 101
would be translated to 100
which is the key for the interval between 100 and 105.
Example:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "histo": { "histogram" : { "field": "price", "interval": 5 } } } ] } } } }
The values are built from a numeric field or a script that return numerical values:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "histo": { "histogram" : { "interval": 5, "script" : { "source": "doc['price'].value", "lang": "painless" } } } } ] } } } }
Date histogram
editThe date_histogram
is similar to the histogram
value source except that the interval
is specified by date/time expression:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram" : { "field": "timestamp", "calendar_interval": "1d" } } } ] } } } }
The example above creates an interval per day and translates all timestamp
values to the start of its closest intervals.
Available expressions for interval: year
, quarter
, month
, week
, day
, hour
, minute
, second
Time values can also be specified via abbreviations supported by time units parsing.
Note that fractional time values are not supported, but you can address this by shifting to another
time unit (e.g., 1.5h
could instead be specified as 90m
).
Format
Internally, a date is represented as a 64 bit number representing a timestamp in milliseconds-since-the-epoch. These timestamps are returned as the bucket keys. It is possible to return a formatted date string instead using the format specified with the format parameter:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram" : { "field": "timestamp", "calendar_interval": "1d", "format": "yyyy-MM-dd" } } } ] } } } }
Supports expressive date format pattern |
Time Zone
Date-times are stored in Elasticsearch in UTC. By default, all bucketing and
rounding is also done in UTC. The time_zone
parameter can be used to indicate
that bucketing should use a different time zone.
Time zones may either be specified as an ISO 8601 UTC offset (e.g. +01:00
or
-08:00
) or as a timezone id, an identifier used in the TZ database like
America/Los_Angeles
.
Offset
Use the offset
parameter to change the start value of each bucket by the
specified positive (+
) or negative offset (-
) duration, such as 1h
for
an hour, or 1d
for a day. See Time units for more possible time
duration options.
For example, when using an interval of day
, each bucket runs from midnight
to midnight. Setting the offset
parameter to +6h
changes each bucket
to run from 6am to 6am:
PUT my_index/_doc/1?refresh { "date": "2015-10-01T05:30:00Z" } PUT my_index/_doc/2?refresh { "date": "2015-10-01T06:30:00Z" } GET my_index/_search?size=0 { "aggs": { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram" : { "field": "date", "calendar_interval": "day", "offset": "+6h", "format": "iso8601" } } } ] } } } }
Instead of a single bucket starting at midnight, the above request groups the documents into buckets starting at 6am:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": "2015-10-01T06:00:00.000Z" }, "buckets": [ { "key": { "date": "2015-09-30T06:00:00.000Z" }, "doc_count": 1 }, { "key": { "date": "2015-10-01T06:00:00.000Z" }, "doc_count": 1 } ] } } }
The start offset
of each bucket is calculated after time_zone
adjustments have been made.
Mixing different values source
editThe sources
parameter accepts an array of values source.
It is possible to mix different values source to create composite buckets.
For example:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } }, { "product": { "terms": {"field": "product" } } } ] } } } }
This will create composite buckets from the values created by two values source, a date_histogram
and a terms
.
Each bucket is composed of two values, one for each value source defined in the aggregation.
Any type of combinations is allowed and the order in the array is preserved
in the composite buckets.
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "shop": { "terms": {"field": "shop" } } }, { "product": { "terms": { "field": "product" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } } ] } } } }
Order
editBy default the composite buckets are sorted by their natural ordering. Values are sorted
in ascending order of their values. When multiple value sources are requested, the ordering is done per value
source, the first value of the composite bucket is compared to the first value of the other composite bucket and if they are equals the
next values in the composite bucket are used for tie-breaking. This means that the composite bucket
[foo, 100]
is considered smaller than [foobar, 0]
because foo
is considered smaller than foobar
.
It is possible to define the direction of the sort for each value source by setting order
to asc
(default value)
or desc
(descending order) directly in the value source definition.
For example:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": {"field": "product", "order": "asc" } } } ] } } } }
... will sort the composite bucket in descending order when comparing values from the date_histogram
source
and in ascending order when comparing values from the terms
source.
Missing bucket
editBy default documents without a value for a given source are ignored.
It is possible to include them in the response by setting missing_bucket
to
true
(defaults to false
):
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "product_name": { "terms" : { "field": "product", "missing_bucket": true } } } ] } } } }
In the example above the source product_name
will emit an explicit null
value
for documents without a value for the field product
.
The order
specified in the source dictates whether the null
values should rank
first (ascending order, asc
) or last (descending order, desc
).
Size
editThe size
parameter can be set to define how many composite buckets should be returned.
Each composite bucket is considered as a single bucket so setting a size of 10 will return the
first 10 composite buckets created from the values source.
The response contains the values for each composite bucket in an array containing the values extracted
from each value source.
Pagination
editIf the number of composite buckets is too high (or unknown) to be returned in a single response
it is possible to split the retrieval in multiple requests.
Since the composite buckets are flat by nature, the requested size
is exactly the number of composite buckets
that will be returned in the response (assuming that they are at least size
composite buckets to return).
If all composite buckets should be retrieved it is preferable to use a small size (100
or 1000
for instance)
and then use the after
parameter to retrieve the next results.
For example:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "size": 2, "sources" : [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d" } } }, { "product": { "terms": {"field": "product" } } } ] } } } }
... returns:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": 1494288000000, "product": "mad max" }, "buckets": [ { "key": { "date": 1494201600000, "product": "rocky" }, "doc_count": 1 }, { "key": { "date": 1494288000000, "product": "mad max" }, "doc_count": 2 } ] } } }
To get the next set of buckets, resend the same aggregation with the after
parameter set to the after_key
value returned in the response.
For example, this request uses the after_key
value provided in the previous response:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "size": 2, "sources" : [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": {"field": "product", "order": "asc" } } } ], "after": { "date": 1494288000000, "product": "mad max" } } } } }
The after_key
is usually the key to the last bucket returned in
the response, but that isn’t guaranteed. Always use the returned after_key
instead
of derriving it from the buckets.
Early termination
editFor optimal performance the index sort should be set on the index so that it matches parts or fully the source order in the composite aggregation. For instance the following index sort:
PUT twitter { "settings" : { "index" : { "sort.field" : ["username", "timestamp"], "sort.order" : ["asc", "desc"] } }, "mappings": { "properties": { "username": { "type": "keyword", "doc_values": true }, "timestamp": { "type": "date" } } } }
This index is sorted by |
|
… in ascending order for the
|
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "user_name": { "terms" : { "field": "user_name" } } } ] } } } }
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "user_name": { "terms" : { "field": "user_name" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } } ] } } } }
|
|
|
In order to optimize the early termination it is advised to set track_total_hits
in the request
to false
. The number of total hits that match the request can be retrieved on the first request
and it would be costly to compute this number on every page:
GET /_search { "size": 0, "track_total_hits": false, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "user_name": { "terms" : { "field": "user_name" } } }, { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } } ] } } } }
Note that the order of the source is important, in the example below switching the user_name
with the timestamp
would deactivate the sort optimization since this configuration wouldn’t match the index sort specification.
If the order of sources do not matter for your use case you can follow these simple guidelines:
- Put the fields with the highest cardinality first.
- Make sure that the order of the field matches the order of the index sort.
- Put multi-valued fields last since they cannot be used for early termination.
index sort can slowdown indexing, it is very important to test index sorting
with your specific use case and dataset to ensure that it matches your requirement. If it doesn’t note that composite
aggregations will also try to early terminate on non-sorted indices if the query matches all document (match_all
query).
Sub-aggregations
editLike any multi-bucket
aggregations the composite
aggregation can hold sub-aggregations.
These sub-aggregations can be used to compute other buckets or statistics on each composite bucket created by this
parent aggregation.
For instance the following example computes the average value of a field
per composite bucket:
GET /_search { "size": 0, "aggs" : { "my_buckets": { "composite" : { "sources" : [ { "date": { "date_histogram": { "field": "timestamp", "calendar_interval": "1d", "order": "desc" } } }, { "product": { "terms": {"field": "product" } } } ] }, "aggregations": { "the_avg": { "avg": { "field": "price" } } } } } }
... returns:
{ ... "aggregations": { "my_buckets": { "after_key": { "date": 1494201600000, "product": "rocky" }, "buckets": [ { "key": { "date": 1494460800000, "product": "apocalypse now" }, "doc_count": 1, "the_avg": { "value": 10.0 } }, { "key": { "date": 1494374400000, "product": "mad max" }, "doc_count": 1, "the_avg": { "value": 27.0 } }, { "key": { "date": 1494288000000, "product" : "mad max" }, "doc_count": 2, "the_avg": { "value": 22.5 } }, { "key": { "date": 1494201600000, "product": "rocky" }, "doc_count": 1, "the_avg": { "value": 10.0 } } ] } } }
Pipeline aggregations
editThe composite agg is not currently compatible with pipeline aggregations, nor does it make sense in most cases. E.g. due to the paging nature of composite aggs, a single logical partition (one day for example) might be spread over multiple pages. Since pipeline aggregations are purely post-processing on the final list of buckets, running something like a derivative on a composite page could lead to inaccurate results as it is only taking into account a "partial" result on that page.
Pipeline aggs that are self contained to a single bucket (such as bucket_selector
) might be supported in the future.
On this page