- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Explore API
editExplore API
editThe Graph explore API enables you to extract and summarize information about the documents and terms in your Elasticsearch index.
The easiest way to understand the behaviour of this API is to use the
Graph UI to explore connections. You can view the most recent request submitted
to the _explore
endpoint from the Last request panel. For more information,
see Getting Started with Graph.
For additional information about working with the explore API, see the Graph Troubleshooting and Limitations topics.
Request
editPOST <index>/_graph/explore
Description
editAn initial request to the _explore
API contains a seed query that identifies
the documents of interest and specifies the fields that define the vertices
and connections you want to include in the graph. Subsequent _explore
requests
enable you to spider out from one more vertices of interest. You can exclude
vertices that have already been returned.
Request Body
edit- query
-
A seed query that identifies the documents of interest. Can be any valid Elasticsearch query. For example:
"query": { "bool": { "must": { "match": { "query.raw": "midi" } }, "filter": [ { "range": { "query_time": { "gte": "2015-10-01 00:00:00" } } } ] } }
- vertices
-
Specifies or more fields that contain the terms you want to include in the graph as vertices. For example:
"vertices": [ { "field": "product" } ]
- field
- Identifies a field in the documents of interest.
- include
-
Identifies the terms of interest that form the starting points
from which you want to spider out. You do not have to specify a seed query
if you specify an include clause. The include clause implicitly querys for
documents that contain any of the listed terms listed.
In addition to specifying a simple array of strings, you can also pass
objects with
term
andboost
values to boost matches on particular terms. - exclude
-
The
exclude
clause prevents the specified terms from being included in the results. - size
- Specifies the maximum number of vertex terms returned for each field. Defaults to 5.
- min_doc_count
- Specifies how many documents must contain a pair of terms before it is considered to be a useful connection. This setting acts as a certainty threshold. Defaults to 3.
- shard_min_doc_count
- This advanced setting controls how many documents on a particular shard have to contain a pair of terms before the connection is returned for global consideration. Defaults to 2.
- connections
-
Specifies or more fields from which you want to extract terms that are associated with the specified vertices. For example:
Connections can be nested inside the
connections
object to explore additional relationships in the data. Each level of nesting is considered a hop, and proximity within the graph is often described in terms of hop depth.- query
- An optional guiding query that constrains the Graph API as it explores connected terms. For example, you might want to direct the Graph API to ignore older data by specifying a query that identifies recent documents.
- vertices
-
Contains the fields you are interested in. For example:
"vertices": [ { "field": "query.raw", "size": 5, "min_doc_count": 10, "shard_min_doc_count": 3 } ]
- controls
-
Direct the Graph API how to build the graph.
- use_significance
-
The
use_significance
flag filters associated terms so only those that are significantly associated with your query are included. For information about the algorithm used to calculate significance, see the significant_terms aggregation. Defaults totrue
. - sample_size
- Each hop considers a sample of the best-matching documents on each shard. Using samples improves the speed of execution and keeps exploration focused on meaningfully-connected terms. Very small values (less than 50) might not provide sufficient weight-of-evidence to identify significant connections between terms. Very large sample sizes can dilute the quality of the results and increase execution times. Defaults to 100 documents.
- timeout
- The length of time in milliseconds after which exploration will be halted and the results gathered so far are returned. This timeout is honored on a best-effort basis. Execution might overrun this timeout if, for example, a long pause is encountered while FieldData is loaded for a field.
- sample_diversity
-
To avoid the top-matching documents sample being dominated by a single source of results, it is sometimes necessary to request diversity in the sample. You can do this by selecting a single-value field and setting a maximum number of documents per value for that field. For example:
"sample_diversity": { "field": "category.raw", "max_docs_per_value": 500 }
Examples
editBasic exploration
editAn initial search typically begins with a query to identify strongly related terms.
POST clicklogs/_graph/explore { "query": { "match": { "query.raw": "midi" } }, "vertices": [ { "field": "product" } ], "connections": { "vertices": [ { "field": "query.raw" } ] } }
Seed the exploration with a query. This example is searching clicklogs for people who searched for the term "midi". |
|
Identify the vertices to include in the graph. This example is looking for product codes that are significantly associated with searches for "midi". |
|
Find the connections. This example is looking for other search terms that led people to click on the products that are associated with searches for "midi". |
The response from the explore API looks like this:
{ "took": 0, "timed_out": false, "failures": [], "vertices": [ { "field": "query.raw", "term": "midi cable", "weight": 0.08745858139552132, "depth": 1 }, { "field": "product", "term": "8567446", "weight": 0.13247784285434397, "depth": 0 }, { "field": "product", "term": "1112375", "weight": 0.018600718471158982, "depth": 0 }, { "field": "query.raw", "term": "midi keyboard", "weight": 0.04802242866755111, "depth": 1 } ], "connections": [ { "source": 0, "target": 1, "weight": 0.04802242866755111, "doc_count": 13 }, { "source": 2, "target": 3, "weight": 0.08120623870976627, "doc_count": 23 } ] }
An array of all of the vertices that were discovered. A vertex is an indexed
term, so the field and term value are provided. The |
|
The connections between the vertices in the array. The |
Optional controls
editThe default settings are configured to remove noisy data and get the "big picture" from your data. This example shows how to specify additional parameters to influence how the graph is built.
For tips on tuning the settings for more detailed forensic evaluation where every document could be of interest, see the Troubleshooting guide.
POST clicklogs/_graph/explore { "query": { "match": { "query.raw": "midi" } }, "controls": { "use_significance": false, "sample_size": 2000, "timeout": 2000, "sample_diversity": { "field": "category.raw", "max_docs_per_value": 500 } }, "vertices": [ { "field": "product", "size": 5, "min_doc_count": 10, "shard_min_doc_count": 3 } ], "connections": { "query": { "bool": { "filter": [ { "range": { "query_time": { "gte": "2015-10-01 00:00:00" } } } ] } }, "vertices": [ { "field": "query.raw", "size": 5, "min_doc_count": 10, "shard_min_doc_count": 3 } ] } }
Disable |
|
Increase the sample size to consider a larger set of documents on each shard. |
|
Limit how long a graph request runs before returning results. |
|
Ensure diversity in the sample by setting a limit on the number of documents per value in a particular single-value field, such as a category field. |
|
Control the maximum number of vertex terms returned for each field. |
|
Set a certainty threshold that specifies how many documents have to contain a pair of terms before we consider it to be a useful connection. |
|
Specify how many documents on a shard have to contain a pair of terms before the connection is returned for global consideration. |
|
Restrict which document are considered as you explore connected terms. |
Spidering operations
editAfter an initial search, you typically want to select vertices of interest and see what additional vertices are connected. In graph-speak, this operation is referred to as "spidering". By submitting a series of requests, you can progressively build a graph of related information.
To spider out, you need to specify two things:
- The set of vertices for which you want to find additional connections
- The set of vertices you already know about that you want to exclude from the results of the spidering operation.
You specify this information using include`and `exclude
clauses. For example,
the following request starts with the product 1854873
and spiders
out to find additional search terms associated with that product. The terms
"midi", "midi keyboard", and "synth" are excluded from the results.
On this page