- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Full-Text Search Functions
editFull-Text Search Functions
editSearch functions should be used when performing full-text search, namely
when the MATCH
or QUERY
predicates are being used.
Outside a, so-called, search context, these functions will return default values
such as 0
or NULL
.
MATCH
editSynopsis:
Input:
Description: A full-text search option, in the form of a predicate, available in Elasticsearch SQL that gives the user control over powerful match and multi_match Elasticsearch queries.
The first parameter is the field or fields to match against. In case it receives one value only, Elasticsearch SQL will use a match
query to perform the search:
SELECT author, name FROM library WHERE MATCH(author, 'frank'); author | name ---------------+------------------- Frank Herbert |Dune Frank Herbert |Dune Messiah Frank Herbert |Children of Dune Frank Herbert |God Emperor of Dune
However, it can also receive a list of fields and their corresponding optional boost
value. In this case, Elasticsearch SQL will use a
multi_match
query to match the documents:
SELECT author, name, SCORE() FROM library WHERE MATCH('author^2,name^5', 'frank dune'); author | name | SCORE() ---------------+-------------------+--------------- Frank Herbert |Dune |11.443176 Frank Herbert |Dune Messiah |9.446629 Frank Herbert |Children of Dune |8.043278 Frank Herbert |God Emperor of Dune|7.0029488
The multi_match
query in Elasticsearch has the option of per-field boosting that gives preferential weight
(in terms of scoring) to fields being searched in, using the ^
character. In the example above, the name
field has a greater weight in
the final score than the author
field when searching for frank dune
text in both of them.
Both options above can be used in combination with the optional third parameter of the MATCH()
predicate, where one can specify
additional configuration parameters (separated by semicolon ;
) for either match
or multi_match
queries. For example:
SELECT author, name, SCORE() FROM library WHERE MATCH(name, 'to the star', 'operator=or;cutoff_frequency=0.2'); author | name | SCORE() -----------------+------------------------------------+--------------- Peter F. Hamilton|Pandora's Star |3.0997515 Douglas Adams |The Hitchhiker's Guide to the Galaxy|3.1756816
In the more advanced example above, the cutoff_frequency
parameter allows specifying an absolute or relative document frequency where
high frequency terms are moved into an optional subquery and are only scored if one of the low frequency (below the cutoff) terms in the
case of an or
operator or all of the low frequency terms in the case of an and
operator match. More about this you can find in the
Cutoff frequency page.
The allowed optional parameters for a single-field MATCH()
variant (for the match
Elasticsearch query) are: analyzer
, auto_generate_synonyms_phrase_query
,
cutoff_frequency
, lenient
, fuzziness
, fuzzy_transpositions
, fuzzy_rewrite
, minimum_should_match
, operator
,
max_expansions
, prefix_length
.
The allowed optional parameters for a multi-field MATCH()
variant (for the multi_match
Elasticsearch query) are: analyzer
, auto_generate_synonyms_phrase_query
,
cutoff_frequency
, lenient
, fuzziness
, fuzzy_transpositions
, fuzzy_rewrite
, minimum_should_match
, operator
,
max_expansions
, prefix_length
, slop
, tie_breaker
, type
.
QUERY
editSynopsis:
Input:
Description: Just like MATCH
, QUERY
is a full-text search predicate that gives the user control over the query_string query in Elasticsearch.
The first parameter is basically the input that will be passed as is to the query_string
query, which means that anything that query_string
accepts in its query
field can be used here as well:
SELECT author, name, SCORE() FROM library WHERE QUERY('name:dune'); author | name | SCORE() ---------------+-------------------+--------------- Frank Herbert |Dune |2.2886353 Frank Herbert |Dune Messiah |1.8893257 Frank Herbert |Children of Dune |1.6086556 Frank Herbert |God Emperor of Dune|1.4005898
A more advanced example, showing more of the features that query_string
supports, of course possible with Elasticsearch SQL:
SELECT author, name, page_count, SCORE() FROM library WHERE QUERY('_exists_:"author" AND page_count:>200 AND (name:/star.*/ OR name:duna~)'); author | name | page_count | SCORE() ------------------+-------------------+---------------+--------------- Frank Herbert |Dune |604 |3.7164764 Frank Herbert |Dune Messiah |331 |3.4169943 Frank Herbert |Children of Dune |408 |3.2064917 Frank Herbert |God Emperor of Dune|454 |3.0504425 Peter F. Hamilton |Pandora's Star |768 |3.0 Robert A. Heinlein|Starship Troopers |335 |3.0
The query above uses the _exists_
query to select documents that have values in the author
field, a range query for page_count
and
regex and fuzziness queries for the name
field.
If one needs to customize various configuration options that query_string
exposes, this can be done using the second optional parameter.
Multiple settings can be specified separated by a semicolon ;
:
SELECT author, name, SCORE() FROM library WHERE QUERY('dune god', 'default_operator=and;default_field=name'); author | name | SCORE() ---------------+-------------------+--------------- Frank Herbert |God Emperor of Dune|3.6984892
The allowed optional parameters for QUERY()
are: allow_leading_wildcard
, analyze_wildcard
, analyzer
,
auto_generate_synonyms_phrase_query
, default_field
, default_operator
, enable_position_increments
,
escape
, fuzziness
, fuzzy_max_expansions
, fuzzy_prefix_length
, fuzzy_rewrite
, fuzzy_transpositions
,
lenient
, max_determinized_states
, minimum_should_match
, phrase_slop
, rewrite
, quote_analyzer
,
quote_field_suffix
, tie_breaker
, time_zone
, type
.
SCORE
editSynopsis:
SCORE()
Input: none
Output: double
numeric value
Description: Returns the relevance of a given input to the executed query. The higher score, the more relevant the data.
When doing multiple text queries in the WHERE
clause then, their scores will be
combined using the same rules as Elasticsearch’s
bool query.
Typically SCORE
is used for ordering the results of a query based on their relevance:
SELECT SCORE(), * FROM library WHERE MATCH(name, 'dune') ORDER BY SCORE() DESC; SCORE() | author | name | page_count | release_date ---------------+---------------+-------------------+---------------+-------------------- 2.2886353 |Frank Herbert |Dune |604 |1965-06-01T00:00:00Z 1.8893257 |Frank Herbert |Dune Messiah |331 |1969-10-15T00:00:00Z 1.6086556 |Frank Herbert |Children of Dune |408 |1976-04-21T00:00:00Z 1.4005898 |Frank Herbert |God Emperor of Dune|454 |1981-05-28T00:00:00Z
However, it is perfectly fine to return the score without sorting by it:
SELECT SCORE() AS score, name, release_date FROM library WHERE QUERY('dune') ORDER BY YEAR(release_date) DESC; score | name | release_date ---------------+-------------------+-------------------- 1.4005898 |God Emperor of Dune|1981-05-28T00:00:00Z 1.6086556 |Children of Dune |1976-04-21T00:00:00Z 1.8893257 |Dune Messiah |1969-10-15T00:00:00Z 2.2886353 |Dune |1965-06-01T00:00:00Z