- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
eager_global_ordinals
editeager_global_ordinals
editWhat are global ordinals?
editTo support aggregations and other operations that require looking up field
values on a per-document basis, Elasticsearch uses a data structure called
doc values. Term-based field types such as keyword
store
their doc values using an ordinal mapping for a more compact representation.
This mapping works by assigning each term an incremental integer or ordinal
based on its lexicographic order. The field’s doc values store only the
ordinals for each document instead of the original terms, with a separate
lookup structure to convert between ordinals and terms.
When used during aggregations, ordinals can greatly improve performance. As an
example, the terms
aggregation relies only on ordinals to collect documents
into buckets at the shard-level, then converts the ordinals back to their
original term values when combining results across shards.
Each index segment defines its own ordinal mapping, but aggregations collect data across an entire shard. So to be able to use ordinals for shard-level operations like aggregations, Elasticsearch creates a unified mapping called global ordinals. The global ordinal mapping is built on top of segment ordinals, and works by maintaining a map from global ordinal to the local ordinal for each segment.
Global ordinals are used if a search contains any of the following components:
-
Certain bucket aggregations on
keyword
,ip
, andflattened
fields. This includesterms
aggregations as mentioned above, as well ascomposite
,diversified_sampler
, andsignificant_terms
. -
Bucket aggregations on
text
fields that requirefielddata
to be enabled. -
Operations on parent and child documents from a
join
field, includinghas_child
queries andparent
aggregations.
The global ordinal mapping is an on-heap data structure. When measuring
memory usage, Elasticsearch counts the memory from global ordinals as
fielddata. Global ordinals memory is included in the
fielddata circuit breaker, and is returned
under fielddata
in the node stats response.
Loading global ordinals
editThe global ordinal mapping must be built before ordinals can be used during a search. By default, the mapping is loaded during search on the first time that global ordinals are needed. This is is the right approach if you are optimizing for indexing speed, but if search performance is a priority, it’s recommended to eagerly load global ordinals eagerly on fields that will be used in aggregations:
PUT my_index/_mapping { "properties": { "tags": { "type": "keyword", "eager_global_ordinals": true } } }
When eager_global_ordinals
is enabled, global ordinals are built when a shard
is refreshed — Elasticsearch always loads them before
exposing changes to the content of the index. This shifts the cost of building
global ordinals from search to index-time. Elasticsearch will also eagerly
build global ordinals when creating a new copy of a shard, as can occur when
increasing the number of replicas or relocating a shard onto a new node.
Eager loading can be disabled at any time by updating the eager_global_ordinals
setting:
PUT my_index/_mapping { "properties": { "tags": { "type": "keyword", "eager_global_ordinals": false } } }
On a frozen index, global ordinals are discarded
after each search and rebuilt again when they’re requested. This means that
eager_global_ordinals
should not be used on frozen indices: it would
cause global ordinals to be reloaded on every search. Instead, the index should
be force-merged to a single segment before being frozen. This avoids building
global ordinals altogether (more details can be found in the next section).
Avoiding global ordinal loading
editUsually, global ordinals do not present a large overhead in terms of their loading time and memory usage. However, loading global ordinals can be expensive on indices with large shards, or if the fields contain a large number of unique term values. Because global ordinals provide a unified mapping for all segments on the shard, they also need to be rebuilt entirely when a new segment becomes visible.
In some cases it is possible to avoid global ordinal loading altogether:
-
The
terms
,sampler
, andsignificant_terms
aggregations support a parameterexecution_hint
that helps control how buckets are collected. It defaults toglobal_ordinals
, but can be set tomap
to instead use the term values directly. - If a shard has been force-merged down to a single segment, then its segment ordinals are already global to the shard. In this case, Elasticsearch does not need to build a global ordinal mapping and there is no additional overhead from using global ordinals. Note that for performance reasons you should only force-merge an index to which you will never write to again.