- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Glossary of terms
editGlossary of terms
edit- analysis
-
Analysis is the process of converting full text to terms. Depending on which analyzer is used, these phrases:
FOO BAR
,Foo-Bar
,foo,bar
will probably all result in the termsfoo
andbar
. These terms are what is actually stored in the index.A full text query (not a term query) for
FoO:bAR
will also be analyzed to the termsfoo
,bar
and will thus match the terms stored in the index.It is this process of analysis (both at index time and at search time) that allows Elasticsearch to perform full text queries.
- cluster
- A cluster consists of one or more nodes which share the same cluster name. Each cluster has a single master node which is chosen automatically by the cluster and which can be replaced if the current master node fails.
- cross-cluster replication (CCR)
- The cross-cluster replication feature enables you to replicate indices in remote clusters to your local cluster. For more information, see Cross-cluster replication.
- cross-cluster search (CCS)
- The cross-cluster search feature enables any node to act as a federated client across multiple clusters. See Search across clusters.
- document
-
A document is a JSON document which is stored in Elasticsearch. It is like a row in a table in a relational database. Each document is stored in an index and has a type and an id.
A document is a JSON object (also known in other languages as a hash / hashmap / associative array) which contains zero or more fields, or key-value pairs.
The original JSON document that is indexed will be stored in the
_source
field, which is returned by default when getting or searching for a document. - field
-
A document contains a list of fields, or key-value pairs. The value can be a simple (scalar) value (eg a string, integer, date), or a nested structure like an array or an object. A field is similar to a column in a table in a relational database.
The mapping for each field has a field type (not to be confused with document type) which indicates the type of data that can be stored in that field, eg
integer
,string
,object
. The mapping also allows you to define (amongst other things) how the value for a field should be analyzed. - filter
- A filter is a non-scoring query, meaning that it does not score documents. It is only concerned about answering the question - "Does this document match?". The answer is always a simple, binary yes or no. This kind of query is said to be made in a filter context, hence it is called a filter. Filters are simple checks for set inclusion or exclusion. In most cases, the goal of filtering is to reduce the number of documents that have to be examined.
- follower index
- Follower indices are the target indices for cross-cluster replication. They exist in your local cluster and replicate leader indices.
- force merge
- Manually trigger a merge to reduce the number of segments in each shard of an index and free up the space used by deleted documents. You should not force merge indices that are actively being written to. Merging is normally performed automatically, but you can use force merge after rollover to reduce the shards in the old index to a single segment. See the force merge API.
- freeze
- Make an index read-only and minimize its memory footprint. Frozen indices can be searched without incurring the overhead of of re-opening a closed index, but searches are throttled and might be slower. You can freeze indices to reduce the overhead of keeping older indices searchable before you are ready to archive or delete them. See the freeze API.
- id
-
The ID of a document identifies a document. The
index/id
of a document must be unique. If no ID is provided, then it will be auto-generated. (also see routing) - index
-
An index is like a table in a relational database. It has a mapping which contains a type, which contains the fields in the index.
An index is a logical namespace which maps to one or more primary shards and can have zero or more replica shards.
- index alias
-
An index alias is a secondary name used to refer to one or more existing indices.
Most Elasticsearch APIs accept an index alias in place of an index name.
See Add index alias.
- index template
-
Defines settings and mappings to apply to new indexes that match a simple naming pattern, such as logs-*. An index template can also attach a lifecycle policy to the new index. Index templates are used to automatically configure indices created during rollover.
- leader index
- Leader indices are the source indices for cross-cluster replication. They exist on remote clusters and are replicated to follower indices.
- mapping
-
A mapping is like a schema definition in a relational database. Each index has a mapping, which defines a type, plus a number of index-wide settings.
A mapping can either be defined explicitly, or it will be generated automatically when a document is indexed.
- node
-
A node is a running instance of Elasticsearch which belongs to a cluster. Multiple nodes can be started on a single server for testing purposes, but usually you should have one node per server.
At startup, a node will use unicast to discover an existing cluster with the same cluster name and will try to join that cluster.
- primary shard
-
Each document is stored in a single primary shard. When you index a document, it is indexed first on the primary shard, then on all replicas of the primary shard.
By default, an index has one primary shard. You can specify more primary shards to scale the number of documents that your index can handle.
You cannot change the number of primary shards in an index, once the index is created. However, an index can be split into a new index using the split API.
See also routing
- query
-
A request for information from Elasticsearch. You can think of a query as a question, written in a way Elasticsearch understands. A search consists of one or more queries combined.
There are two types of queries: scoring queries and filters. For more information about query types, see Query and filter context.
- recovery
-
Shard recovery is the process of syncing a replica shard from a primary shard. Upon completion, the replica shard is available for search.
Recovery automatically occurs during the following processes:
- Node startup or failure. This type of recovery is called a local store recovery.
- Primary shard replication.
- Relocation of a shard to a different node in the same cluster.
- Snapshot restoration.
- reindex
- To cycle through some or all documents in one or more indices, re-writing them into the same or new index in a local or remote cluster. This is most commonly done to update mappings, or to upgrade Elasticsearch between two incompatible index versions.
- replica shard
-
Each primary shard can have zero or more replicas. A replica is a copy of the primary shard, and has two purposes:
- increase failover: a replica shard can be promoted to a primary shard if the primary fails
-
increase performance: get and search requests can be handled by primary or replica shards.
By default, each primary shard has one replica, but the number of replicas can be changed dynamically on an existing index. A replica shard will never be started on the same node as its primary shard.
- rollover
-
Redirect an alias to begin writing to a new index when the existing index reaches a certain age, number of docs, or size. The new index is automatically configured according to any matching index templates. For example, if you’re indexing log data, you might use rollover to create daily or weekly indices. See the rollover index API.
- routing
-
When you index a document, it is stored on a single primary shard. That shard is chosen by hashing the
routing
value. By default, therouting
value is derived from the ID of the document or, if the document has a specified parent document, from the ID of the parent document (to ensure that child and parent documents are stored on the same shard).This value can be overridden by specifying a
routing
value at index time, or a routing field in the mapping. - shard
-
A shard is a single Lucene instance. It is a low-level “worker” unit which is managed automatically by Elasticsearch. An index is a logical namespace which points to primary and replica shards.
+ Other than defining the number of primary and replica shards that an index should have, you never need to refer to shards directly. Instead, your code should deal only with an index.
+ Elasticsearch distributes shards amongst all nodes in the cluster, and can move shards automatically from one node to another in the case of node failure, or the addition of new nodes.
- shrink
- Reduce the number of primary shards in an index. You can shrink an index to reduce its overhead when the request volume drops. For example, you might opt to shrink an index once it is no longer the write index. See the shrink index API.
- source field
-
By default, the JSON document that you index will be stored in the
_source
field and will be returned by all get and search requests. This allows you access to the original object directly from search results, rather than requiring a second step to retrieve the object from an ID. - term
-
A term is an exact value that is indexed in Elasticsearch. The terms
foo
,Foo
,FOO
are NOT equivalent. Terms (i.e. exact values) can be searched for using term queries. - text
-
Text (or full text) is ordinary unstructured text, such as this paragraph. By default, text will be analyzed into terms, which is what is actually stored in the index.
Text fields need to be analyzed at index time in order to be searchable as full text, and keywords in full text queries must be analyzed at search time to produce (and search for) the same terms that were generated at index time.
- type
-
A type used to represent the type of document, e.g. an
email
, auser
, or atweet
. Types are deprecated and are in the process of being removed. See Removal of mapping types.