- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.7
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging configuration
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- SQL access settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Search your data
- Query DSL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Boxplot Aggregation
- Cardinality Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Median Absolute Deviation Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- String Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Top Metrics Aggregation
- Value Count Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Avg Bucket Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Cumulative Cardinality Aggregation
- Cumulative Sum Aggregation
- Derivative Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Serial Differencing Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Indexing aggregation results with transforms
- Metrics Aggregations
- Scripting
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Enrich your data
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- CSV Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Enrich Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Inference Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- ILM: Manage the index lifecycle
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat shards
- cat segments
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Document APIs
- Enrich APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create inference trained model
- Delete data frame analytics jobs
- Delete inference trained model
- Evaluate data frame analytics
- Explain data frame analytics API
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get inference trained model
- Get inference trained model stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SAML prepare authentication API
- SAML authenticate API
- SAML logout API
- SAML invalidate API
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management API
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Breaking changes
- Release notes
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Logging configuration
editLogging configuration
editElasticsearch uses Log4j 2 for
logging. Log4j 2 can be configured using the log4j2.properties
file. Elasticsearch exposes three properties, ${sys:es.logs.base_path}
,
${sys:es.logs.cluster_name}
, and ${sys:es.logs.node_name}
that can be
referenced in the configuration file to determine the location of the log
files. The property ${sys:es.logs.base_path}
will resolve to the log directory,
${sys:es.logs.cluster_name}
will resolve to the cluster name (used as the
prefix of log filenames in the default configuration), and
${sys:es.logs.node_name}
will resolve to the node name (if the node name is
explicitly set).
For example, if your log directory (path.logs
) is /var/log/elasticsearch
and
your cluster is named production
then ${sys:es.logs.base_path}
will resolve
to /var/log/elasticsearch
and
${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}.log
will resolve to /var/log/elasticsearch/production.log
.
######## Server JSON ############################ appender.rolling.type = RollingFile appender.rolling.name = rolling appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.json appender.rolling.layout.type = ESJsonLayout appender.rolling.layout.type_name = server appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.json.gz appender.rolling.policies.type = Policies appender.rolling.policies.time.type = TimeBasedTriggeringPolicy appender.rolling.policies.time.interval = 1 appender.rolling.policies.time.modulate = true appender.rolling.policies.size.type = SizeBasedTriggeringPolicy appender.rolling.policies.size.size = 256MB appender.rolling.strategy.type = DefaultRolloverStrategy appender.rolling.strategy.fileIndex = nomax appender.rolling.strategy.action.type = Delete appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path} appender.rolling.strategy.action.condition.type = IfFileName appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-* appender.rolling.strategy.action.condition.nested_condition.type = IfAccumulatedFileSize appender.rolling.strategy.action.condition.nested_condition.exceeds = 2GB ################################################
Configure the |
|
Log to |
|
Use JSON layout. |
|
|
|
Roll logs to |
|
Use a time-based roll policy |
|
Roll logs on a daily basis |
|
Align rolls on the day boundary (as opposed to rolling every twenty-four hours) |
|
Using a size-based roll policy |
|
Roll logs after 256 MB |
|
Use a delete action when rolling logs |
|
Only delete logs matching a file pattern |
|
The pattern is to only delete the main logs |
|
Only delete if we have accumulated too many compressed logs |
|
The size condition on the compressed logs is 2 GB |
######## Server - old style pattern ########### appender.rolling_old.type = RollingFile appender.rolling_old.name = rolling_old appender.rolling_old.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.log appender.rolling_old.layout.type = PatternLayout appender.rolling_old.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker %m%n appender.rolling_old.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.old_log.gz
The configuration for |
Log4j’s configuration parsing gets confused by any extraneous whitespace; if you copy and paste any Log4j settings on this page, or enter any Log4j configuration in general, be sure to trim any leading and trailing whitespace.
Note than you can replace .gz
by .zip
in appender.rolling.filePattern
to
compress the rolled logs using the zip format. If you remove the .gz
extension then logs will not be compressed as they are rolled.
If you want to retain log files for a specified period of time, you can use a rollover strategy with a delete action.
appender.rolling.strategy.type = DefaultRolloverStrategy appender.rolling.strategy.action.type = Delete appender.rolling.strategy.action.basepath = ${sys:es.logs.base_path} appender.rolling.strategy.action.condition.type = IfFileName appender.rolling.strategy.action.condition.glob = ${sys:es.logs.cluster_name}-* appender.rolling.strategy.action.condition.nested_condition.type = IfLastModified appender.rolling.strategy.action.condition.nested_condition.age = 7D
Configure the |
|
Configure the |
|
The base path to the Elasticsearch logs |
|
The condition to apply when handling rollovers |
|
Delete files from the base path matching the glob
|
|
A nested condition to apply to files matching the glob |
|
Retain logs for seven days |
Multiple configuration files can be loaded (in which case they will get merged)
as long as they are named log4j2.properties
and have the Elasticsearch config
directory as an ancestor; this is useful for plugins that expose additional
loggers. The logger section contains the java packages and their corresponding
log level. The appender section contains the destinations for the logs.
Extensive information on how to customize logging and all the supported
appenders can be found on the
Log4j
documentation.
Configuring logging levels
editThere are four ways to configuring logging levels, each having situations in which they are appropriate to use.
-
Via the command-line:
-E <name of logging hierarchy>=<level>
(e.g.,-E logger.org.elasticsearch.discovery=debug
). This is most appropriate when you are temporarily debugging a problem on a single node (for example, a problem with startup, or during development). -
Via
elasticsearch.yml
:<name of logging hierarchy>: <level>
(e.g.,logger.org.elasticsearch.discovery: debug
). This is most appropriate when you are temporarily debugging a problem but are not starting Elasticsearch via the command-line (e.g., via a service) or you want a logging level adjusted on a more permanent basis. -
Via cluster settings:
PUT /_cluster/settings { "transient": { "<name of logging hierarchy>": "<level>" } }
For example:
PUT /_cluster/settings { "transient": { "logger.org.elasticsearch.discovery": "DEBUG" } }
This is most appropriate when you need to dynamically need to adjust a logging level on an actively-running cluster.
-
Via the
log4j2.properties
:logger.<unique_identifier>.name = <name of logging hierarchy> logger.<unique_identifier>.level = <level>
For example:
logger.discovery.name = org.elasticsearch.discovery logger.discovery.level = debug
This is most appropriate when you need fine-grained control over the logger (for example, you want to send the logger to another file, or manage the logger differently; this is a rare use-case).
Deprecation logging
editIn addition to regular logging, Elasticsearch allows you to enable logging of deprecated actions. For example this allows you to determine early, if you need to migrate certain functionality in the future. By default, deprecation logging is enabled at the WARN level, the level at which all deprecation log messages will be emitted.
logger.deprecation.level = warn
This will create a daily rolling deprecation log file in your log directory. Check this file regularly, especially when you intend to upgrade to a new major version.
The default logging configuration has set the roll policy for the deprecation logs to roll and compress after 1 GB, and to preserve a maximum of five log files (four rolled logs, and the active log).
You can disable it in the config/log4j2.properties
file by setting the deprecation
log level to error
like this:
logger.deprecation.name = org.elasticsearch.deprecation logger.deprecation.level = error
You can identify what is triggering deprecated functionality if X-Opaque-Id
was used as an HTTP header.
The user ID is included in the X-Opaque-ID
field in deprecation JSON logs.
{ "type": "deprecation", "timestamp": "2019-08-30T12:07:07,126+02:00", "level": "WARN", "component": "o.e.d.r.a.a.i.RestCreateIndexAction", "cluster.name": "distribution_run", "node.name": "node-0", "message": "[types removal] Using include_type_name in create index requests is deprecated. The parameter will be removed in the next major version.", "x-opaque-id": "MY_USER_ID", "cluster.uuid": "Aq-c-PAeQiK3tfBYtig9Bw", "node.id": "D7fUYfnfTLa2D7y-xw6tZg" }
JSON log format
editTo make parsing Elasticsearch logs easier, logs are now printed in a JSON format.
This is configured by a Log4J layout property appender.rolling.layout.type = ESJsonLayout
.
This layout requires a type_name
attribute to be set which is used to distinguish
logs streams when parsing.
appender.rolling.layout.type = ESJsonLayout appender.rolling.layout.type_name = server
Each line contains a single JSON document with the properties configured in ESJsonLayout
.
See this class javadoc for more details.
However if a JSON document contains an exception, it will be printed over multiple lines.
The first line will contain regular properties and subsequent lines will contain the
stacktrace formatted as a JSON array.
You can still use your own custom layout. To do that replace the line
appender.rolling.layout.type
with a different layout. See sample below:
appender.rolling.type = RollingFile appender.rolling.name = rolling appender.rolling.fileName = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}_server.log appender.rolling.layout.type = PatternLayout appender.rolling.layout.pattern = [%d{ISO8601}][%-5p][%-25c{1.}] [%node_name]%marker %.-10000m%n appender.rolling.filePattern = ${sys:es.logs.base_path}${sys:file.separator}${sys:es.logs.cluster_name}-%d{yyyy-MM-dd}-%i.log.gz