- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.14
- Quick start
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Registered domain
- Remove
- Rename
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Aliases
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving average
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- EQL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Customize built-in ILM policies
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Configuring security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- How to
- REST APIs
- API conventions
- Autoscaling APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- Features APIs
- Fleet APIs
- Find structure API
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Flush
- Force merge
- Freeze index
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Logstash APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create or update trained model aliases
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Delete trained model aliases
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Script APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.14.2
- Elasticsearch version 7.14.1
- Elasticsearch version 7.14.0
- Elasticsearch version 7.13.4
- Elasticsearch version 7.13.3
- Elasticsearch version 7.13.2
- Elasticsearch version 7.13.1
- Elasticsearch version 7.13.0
- Elasticsearch version 7.12.1
- Elasticsearch version 7.12.0
- Elasticsearch version 7.11.2
- Elasticsearch version 7.11.1
- Elasticsearch version 7.11.0
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
Grok processor
editGrok processor
editExtracts structured fields out of a single text field within a document. You choose which field to extract matched fields from, as well as the grok pattern you expect will match. A grok pattern is like a regular expression that supports aliased expressions that can be reused.
This processor comes packaged with many reusable patterns.
If you need help building patterns to match your logs, you will find the Grok Debugger tool quite useful! The Grok Constructor is also a useful tool.
Using the Grok Processor in a Pipeline
editTable 21. Grok Options
Name | Required | Default | Description |
---|---|---|---|
|
yes |
- |
The field to use for grok expression parsing |
|
yes |
- |
An ordered list of grok expression to match and extract named captures with. Returns on the first expression in the list that matches. |
|
no |
- |
A map of pattern-name and pattern tuples defining custom patterns to be used by the current processor. Patterns matching existing names will override the pre-existing definition. |
|
no |
false |
when true, |
|
no |
false |
If |
|
no |
- |
Description of the processor. Useful for describing the purpose of the processor or its configuration. |
|
no |
- |
Conditionally execute the processor. See Conditionally run a processor. |
|
no |
|
Ignore failures for the processor. See Handling pipeline failures. |
|
no |
- |
Handle failures for the processor. See Handling pipeline failures. |
|
no |
- |
Identifier for the processor. Useful for debugging and metrics. |
Here is an example of using the provided patterns to extract out and name structured fields from a string field in a document.
POST _ingest/pipeline/_simulate { "pipeline": { "description" : "...", "processors": [ { "grok": { "field": "message", "patterns": ["%{IP:client} %{WORD:method} %{URIPATHPARAM:request} %{NUMBER:bytes:int} %{NUMBER:duration:double}"] } } ] }, "docs":[ { "_source": { "message": "55.3.244.1 GET /index.html 15824 0.043" } } ] }
This pipeline will insert these named captures as new fields within the document, like so:
{ "docs": [ { "doc": { "_index": "_index", "_type": "_doc", "_id": "_id", "_source" : { "duration" : 0.043, "request" : "/index.html", "method" : "GET", "bytes" : 15824, "client" : "55.3.244.1", "message" : "55.3.244.1 GET /index.html 15824 0.043" }, "_ingest": { "timestamp": "2016-11-08T19:43:03.850+0000" } } } ] }
Custom Patterns
editThe Grok processor comes pre-packaged with a base set of patterns. These patterns may not always have what you are looking for. Patterns have a very basic format. Each entry has a name and the pattern itself.
You can add your own patterns to a processor definition under the pattern_definitions
option.
Here is an example of a pipeline specifying custom pattern definitions:
{ "description" : "...", "processors": [ { "grok": { "field": "message", "patterns": ["my %{FAVORITE_DOG:dog} is colored %{RGB:color}"], "pattern_definitions" : { "FAVORITE_DOG" : "beagle", "RGB" : "RED|GREEN|BLUE" } } } ] }
Providing Multiple Match Patterns
editSometimes one pattern is not enough to capture the potential structure of a field. Let’s assume we
want to match all messages that contain your favorite pet breeds of either cats or dogs. One way to accomplish
this is to provide two distinct patterns that can be matched, instead of one really complicated expression capturing
the same or
behavior.
Here is an example of such a configuration executed against the simulate API:
POST _ingest/pipeline/_simulate { "pipeline": { "description" : "parse multiple patterns", "processors": [ { "grok": { "field": "message", "patterns": ["%{FAVORITE_DOG:pet}", "%{FAVORITE_CAT:pet}"], "pattern_definitions" : { "FAVORITE_DOG" : "beagle", "FAVORITE_CAT" : "burmese" } } } ] }, "docs":[ { "_source": { "message": "I love burmese cats!" } } ] }
response:
{ "docs": [ { "doc": { "_type": "_doc", "_index": "_index", "_id": "_id", "_source": { "message": "I love burmese cats!", "pet": "burmese" }, "_ingest": { "timestamp": "2016-11-08T19:43:03.850+0000" } } } ] }
Both patterns will set the field pet
with the appropriate match, but what if we want to trace which of our
patterns matched and populated our fields? We can do this with the trace_match
parameter. Here is the output of
that same pipeline, but with "trace_match": true
configured:
{ "docs": [ { "doc": { "_type": "_doc", "_index": "_index", "_id": "_id", "_source": { "message": "I love burmese cats!", "pet": "burmese" }, "_ingest": { "_grok_match_index": "1", "timestamp": "2016-11-08T19:43:03.850+0000" } } } ] }
In the above response, you can see that the index of the pattern that matched was "1"
. This is to say that it was the
second (index starts at zero) pattern in patterns
to match.
This trace metadata enables debugging which of the patterns matched. This information is stored in the ingest metadata and will not be indexed.
Retrieving patterns from REST endpoint
editThe Grok Processor comes packaged with its own REST endpoint for retrieving which patterns the processor is packaged with.
GET _ingest/processor/grok
The above request will return a response body containing a key-value representation of the built-in patterns dictionary.
{ "patterns" : { "BACULA_CAPACITY" : "%{INT}{1,3}(,%{INT}{3})*", "PATH" : "(?:%{UNIXPATH}|%{WINPATH})", ... }
By default, the API returns patterns in the order they are read from disk. This sort order preserves groupings of related patterns. For example, all patterns related to parsing Linux syslog lines stay grouped together.
You can use the optional boolean s
query parameter to sort returned patterns
by key name instead.
GET _ingest/processor/grok?s
The API returns the following response.
{ "patterns" : { "BACULA_CAPACITY" : "%{INT}{1,3}(,%{INT}{3})*", "BACULA_DEVICE" : "%{USER}", "BACULA_DEVICEPATH" : "%{UNIXPATH}", ... }
This can be useful to reference as the built-in patterns change across versions.
Grok watchdog
editGrok expressions that take too long to execute are interrupted and the grok processor then fails with an exception. The grok processor has a watchdog thread that determines when evaluation of a grok expression takes too long and is controlled by the following settings:
Table 22. Grok watchdog settings
Name | Default | Description |
---|---|---|
|
1s |
How often to check whether there are grok evaluations that take longer than the maximum allowed execution time. |
|
1s |
The maximum allowed execution of a grok expression evaluation. |
Grok debugging
editIt is advised to use the Grok Debugger to debug grok patterns. From there you can test one or more patterns in the UI against sample data. Under the covers it uses the same engine as ingest node processor.
Additionally, it is recommended to enable debug logging for Grok so that any additional messages may also be seen in the Elasticsearch server log.
PUT _cluster/settings { "transient": { "logger.org.elasticsearch.ingest.common.GrokProcessor": "debug" } }
On this page