- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 7.10
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Setting JVM options
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- HTTP
- Index lifecycle management settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Node
- Network settings
- Node query cache settings
- Search settings
- Security settings
- Shard request cache settings
- Snapshot lifecycle management settings
- Transforms settings
- Transport
- Thread pools
- Watcher settings
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Set up X-Pack
- Configuring X-Pack Java Clients
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest node
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Geo-distance
- Geohash grid
- Geotile grid
- Global
- Histogram
- IP range
- Missing
- Nested
- Parent
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Bucket aggregations
- EQL
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Overview
- Concepts
- Automate rollover
- Manage Filebeat time-based indices
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Resolve lifecycle policy execution errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Granting access to Stack Management features
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and index aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watch for cluster and index events
- Command line tools
- How To
- Glossary of terms
- REST APIs
- API conventions
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Nodes reload secure settings
- Nodes stats
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Cross-cluster replication APIs
- Data stream APIs
- Document APIs
- Enrich APIs
- Graph explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete component template
- Delete index template
- Delete index template (legacy)
- Flush
- Force merge
- Freeze index
- Get component template
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- Open index
- Put index template
- Put index template (legacy)
- Put component template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Simulate index
- Simulate template
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Resolve index
- List dangling indices
- Import dangling index
- Delete dangling index
- Index lifecycle management APIs
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Create trained models
- Update data frame analytics jobs
- Delete data frame analytics jobs
- Delete trained models
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Get trained models
- Get trained models stats
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Migration APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Search APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SSL certificate
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 7.10.2
- Elasticsearch version 7.10.1
- Elasticsearch version 7.10.0
- Elasticsearch version 7.9.3
- Elasticsearch version 7.9.2
- Elasticsearch version 7.9.1
- Elasticsearch version 7.9.0
- Elasticsearch version 7.8.1
- Elasticsearch version 7.8.0
- Elasticsearch version 7.7.1
- Elasticsearch version 7.7.0
- Elasticsearch version 7.6.2
- Elasticsearch version 7.6.1
- Elasticsearch version 7.6.0
- Elasticsearch version 7.5.2
- Elasticsearch version 7.5.1
- Elasticsearch version 7.5.0
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
- Dependencies and versions
What’s new in 7.10
editWhat’s new in 7.10
editHere are the highlights of what’s new and improved in Elasticsearch 7.10! For detailed information about this release, see the Release notes and Breaking changes.
Other versions: 7.9 | 7.8 | 7.7 | 7.6 | 7.5 | 7.4 | 7.3 | 7.2 | 7.1 | 7.0
Indexing speed improvement
editElasticsearch 7.10 improves indexing speed by up to 20%. We’ve reduced the coordination
needed to add entries to the transaction log.
This reduction allows for more concurrency and increases the transaction
log buffer size from 8KB
to 1MB
. However, performance gains are lower for
full-text search and other analysis-intensive use cases. The heavier the
indexing chain, the lower the gains, so indexing chains that involve many
fields, ingest pipelines or full-text indexing will see lower gains.
More space-efficient indices
editElasticsearch 7.10 depends on Apache Lucene 8.7, which introduces higher compression of
stored fields, the part of the index that notably stores the
_source
. On the various data sets that we
benchmark against, we noticed space reductions between 0% and 10%. This change
especially helps on data sets that have lots of redundant data across documents,
which is typically the case of the documents that are produced by our
Observability solutions, which repeat metadata about the host that produced the
data on every document.
Elasticsearch offers the ability to configure the
index.codec
setting to tell
Elasticsearch how aggressively to compress stored fields. Both supported values
default
and best_compression
will get better compression with this change.
Data tiers
edit7.10 introduces the concept of formalized data tiers within Elasticsearch. Data tiers are a simple, integrated approach that gives users control over optimizing for cost, performance, and breadth/depth of data. Prior to this formalization, many users configured their own tier topology using custom node attributes as well as using ILM to manage the lifecycle and location of data within a cluster.
With this formalization, data tiers (content, hot, warm, and cold) can be explicitly configured using node roles, and indices can be configured to be allocated within a specific tier using index-level data tier allocation filtering. ILM will make use of these tiers to automatically migrate data between nodes as an index goes through the phases of its lifecycle.
Newly created indices abstracted by a data stream will
be allocated to the data_hot
tier automatically, while standalone indices will
be allocated to the data_content
tier automatically. Nodes with the
pre-existing data
role are considered to be part of all tiers.
AUC ROC evaluation metrics for classification analysis
editArea under the curve of receiver operating characteristic (AUC ROC) is an evaluation metric that has been available for outlier detection since 7.3 and now is available for classification analysis. AUC ROC represents the performance of the classification process at different predicted probability thresholds. The true positive rate for a specific class is compared against the rate of all the other classes combined at the different threshold levels to create the curve.
Custom feature processors in data frame analytics
editFeature processors enable you to extract process features from document fields. You can use these features in model training and model deployment. Custom feature processors provide a mechanism to create features that can be used at search and ingest time and they don’t take up space in the index. This process more tightly couples feature generation with the resulting model. The result is simplified model management as both the features and the model can easily follow the same life cycle.
Points in time (PITs) for search
editIn 7.10, we’re introducing points in time (PITs), a lightweight way to preserve index state over searches. PITs improve end-user experience by making UIs more reactive.
By default, a search request waits for complete results before returning a response. For example, a search that retrieves top hits and aggregations returns a response only after both top hits and aggregations are computed. However, aggregations are usually slower and more expensive to compute than top hits. Instead of sending a combined request, you can send two separate requests: one for top hits and another one for aggregations. With separate search requests, a UI can display top hits as soon as they’re available and display aggregation data after the slower aggregation request completes. You can use a PIT to ensure both search requests run on the same data and index state.
To use a PIT in a search, you must first explicitly create the PIT using the new
open PIT API. PITs get automatically garbage-collected
after keep_alive
if no follow-up request extends their duration.
POST /my-index-000001/_pit?keep_alive=1m
The API returns a PIT ID you can use in search requests. You can also
configure by how long to extend your PIT’s lifespan using the search request’s
keep_alive
parameter.
POST /_search { "size": 100, "query": { "match" : { "title" : "elasticsearch" } }, "pit": { "id": "46ToAwMDaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQNpZHkFdXVpZDIrBm5vZGVfMwAAAAAAAAAAKgFjA2lkeQV1dWlkMioGbm9kZV8yAAAAAAAAAAAMAWICBXV1aWQyAAAFdXVpZDEAAQltYXRjaF9hbGw_gAAAAA==", "keep_alive": "1m" } }
PITs automatically close when their keep_alive
period ends. You can
also manually close PITs you no longer need using the
close PIT API. Closing a PIT releases the
resources needed to maintain the PIT’s index state.
DELETE /_pit { "id" : "46ToAwMDaWR4BXV1aWQxAgZub2RlXzEAAAAAAAAAAAEBYQNpZHkFdXVpZDIrBm5vZGVfMwAAAAAAAAAAKgFjA2lkeQV1dWlkMioGbm9kZV8yAAAAAAAAAAAMAWIBBXV1aWQyAAA=" }
For more information about using PITs in search, see
Paginate search results with
search_after
or the PIT API documentation.
Request-level circuit breakers on coordinating nodes
editYou can now use a coordinating node to account for memory used to perform partial and final reduce of aggregations in the request circuit breaker. The search coordinator adds the memory that it used to save and reduce the results of shard aggregations in the request circuit breaker. Before any partial or final reduce, the memory needed to reduce the aggregations is estimated and a CircuitBreakingException is thrown if exceeds the maximum memory allowed in this breaker.
This size is estimated as roughly 1.5 times the size of the serialized aggregations that need to be reduced. This estimation can be completely off for some aggregations but it is corrected with the real size after the reduce completes. If the reduce is successful, we update the circuit breaker to remove the size of the source aggregations and replace the estimation with the serialized size of the newly reduced result.
EQL: Case-sensitivity and the :
operator
editIn 7.10, we made most EQL operators and functions case-sensitive by default.
We’ve also added :
, a new case-insensitive equal operator. Designed for
security use cases, you can use the :
operator to search for strings in
Windows event logs and other event data containing a mix of letter cases.
GET /my-index-000001/_eql/search { "query": """ process where process.executable : "c:\\\\windows\\\\system32\\\\cmd.exe" """ }
For more information, see the EQL syntax documentation.
REST API access to system indices is deprecated
editWe are deprecating REST API access to system indices. Most REST API requests that attempt to access system indices will return the following deprecation warning:
this request accesses system indices: [.system_index_name], but in a future major version, direct access to system indices will be prevented by default
The following REST API endpoints access system indices as part of their implementation and will not return the deprecation warning:
-
GET _cluster/health
-
GET {index}/_recovery
-
GET _cluster/allocation/explain
-
GET _cluster/state
-
POST _cluster/reroute
-
GET {index}/_stats
-
GET {index}/_segments
-
GET {index}/_shard_stores
-
GET _cat/[indices,aliases,health,recovery,shards,segments]
We are also adding a new metadata flag to track indices. Elasticsearch will automatically add this flag to any existing system indices during upgrade.
New thread pools for system indices
editWe’ve added two new thread pools for system indices: system_read
and
system_write
. These thread pools ensure system indices critical to the Elastic
Stack, such as those used by security or Kibana, remain responsive when
a cluster is under heavy query or indexing load.
system_read
is a fixed
thread pool used to manage resources for
read operations targeting system indices. Similarly, system_write
is a
fixed
thread pool used to manage resources for write operations targeting
system indices. Both have a maximum number of threads equal to 5
or half of the available processors, whichever is smaller.
On this page
- Indexing speed improvement
- More space-efficient indices
- Data tiers
- AUC ROC evaluation metrics for classification analysis
- Custom feature processors in data frame analytics
- Points in time (PITs) for search
- Request-level circuit breakers on coordinating nodes
- EQL: Case-sensitivity and the
:
operator - REST API access to system indices is deprecated
- New thread pools for system indices