- Elasticsearch Guide: other versions:
- What is Elasticsearch?
- What’s new in 8.14
- Quickstart
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Secure settings
- Auditing settings
- Circuit breaker settings
- Cluster-level shard allocation and routing settings
- Miscellaneous cluster settings
- Cross-cluster replication settings
- Discovery and cluster formation settings
- Field data cache settings
- Health Diagnostic settings
- Index lifecycle management settings
- Data stream lifecycle settings
- Index management settings
- Index recovery settings
- Indexing buffer settings
- License settings
- Local gateway settings
- Logging
- Machine learning settings
- Monitoring settings
- Nodes
- Networking
- Node query cache settings
- Search settings
- Security settings
- Shard allocation, relocation, and recovery
- Shard request cache settings
- Snapshot and restore settings
- Transforms settings
- Thread pools
- Watcher settings
- Advanced configuration
- Important system configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- All permission check
- Discovery configuration check
- Bootstrap Checks for X-Pack
- Starting Elasticsearch
- Stopping Elasticsearch
- Discovery and cluster formation
- Add and remove nodes in your cluster
- Full-cluster restart and rolling restart
- Remote clusters
- Plugins
- Upgrade Elasticsearch
- Index modules
- Mapping
- Dynamic mapping
- Explicit mapping
- Runtime fields
- Field data types
- Aggregate metric
- Alias
- Arrays
- Binary
- Boolean
- Completion
- Date
- Date nanoseconds
- Dense vector
- Flattened
- Geopoint
- Geoshape
- Histogram
- IP
- Join
- Keyword
- Nested
- Numeric
- Object
- Percolator
- Point
- Range
- Rank feature
- Rank features
- Search-as-you-type
- Semantic text
- Shape
- Sparse vector
- Text
- Token count
- Unsigned long
- Version
- Metadata fields
- Mapping parameters
- Mapping limit settings
- Removal of mapping types
- Text analysis
- Overview
- Concepts
- Configure text analysis
- Built-in analyzer reference
- Tokenizer reference
- Token filter reference
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten graph
- Hunspell
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword marker
- Keyword repeat
- KStem
- Length
- Limit token count
- Lowercase
- MinHash
- Multiplexer
- N-gram
- Normalization
- Pattern capture
- Pattern replace
- Phonetic
- Porter stem
- Predicate script
- Remove duplicates
- Reverse
- Shingle
- Snowball
- Stemmer
- Stemmer override
- Stop
- Synonym
- Synonym graph
- Trim
- Truncate
- Unique
- Uppercase
- Word delimiter
- Word delimiter graph
- Character filters reference
- Normalizers
- Index templates
- Data streams
- Ingest pipelines
- Example: Parse logs
- Enrich your data
- Processor reference
- Append
- Attachment
- Bytes
- Circle
- Community ID
- Convert
- CSV
- Date
- Date index name
- Dissect
- Dot expander
- Drop
- Enrich
- Fail
- Fingerprint
- Foreach
- Geo-grid
- GeoIP
- Grok
- Gsub
- HTML strip
- Inference
- Join
- JSON
- KV
- Lowercase
- Network direction
- Pipeline
- Redact
- Registered domain
- Remove
- Rename
- Reroute
- Script
- Set
- Set security user
- Sort
- Split
- Trim
- Uppercase
- URL decode
- URI parts
- User agent
- Ingest pipelines in Search
- Aliases
- Search your data
- Query DSL
- Aggregations
- Bucket aggregations
- Adjacency matrix
- Auto-interval date histogram
- Categorize text
- Children
- Composite
- Date histogram
- Date range
- Diversified sampler
- Filter
- Filters
- Frequent item sets
- Geo-distance
- Geohash grid
- Geohex grid
- Geotile grid
- Global
- Histogram
- IP prefix
- IP range
- Missing
- Multi Terms
- Nested
- Parent
- Random sampler
- Range
- Rare terms
- Reverse nested
- Sampler
- Significant terms
- Significant text
- Terms
- Time series
- Variable width histogram
- Subtleties of bucketing range fields
- Metrics aggregations
- Pipeline aggregations
- Average bucket
- Bucket script
- Bucket count K-S test
- Bucket correlation
- Bucket selector
- Bucket sort
- Change point
- Cumulative cardinality
- Cumulative sum
- Derivative
- Extended stats bucket
- Inference bucket
- Max bucket
- Min bucket
- Moving function
- Moving percentiles
- Normalize
- Percentiles bucket
- Serial differencing
- Stats bucket
- Sum bucket
- Bucket aggregations
- Geospatial analysis
- EQL
- ES|QL
- SQL
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Scripting
- Data management
- ILM: Manage the index lifecycle
- Tutorial: Customize built-in policies
- Tutorial: Automate rollover
- Index management in Kibana
- Overview
- Concepts
- Index lifecycle actions
- Configure a lifecycle policy
- Migrate index allocation filters to node roles
- Troubleshooting index lifecycle management errors
- Start and stop index lifecycle management
- Manage existing indices
- Skip rollover
- Restore a managed data stream or index
- Data tiers
- Autoscaling
- Monitor a cluster
- Roll up or transform your data
- Set up a cluster for high availability
- Snapshot and restore
- Secure the Elastic Stack
- Elasticsearch security principles
- Start the Elastic Stack with security enabled automatically
- Manually configure security
- Updating node security certificates
- User authentication
- Built-in users
- Service accounts
- Internal users
- Token-based authentication services
- User profiles
- Realms
- Realm chains
- Security domains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- JWT authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Looking up users without authentication
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Role restriction
- Security privileges
- Document level security
- Field level security
- Granting privileges for data streams and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enable audit logging
- Restricting connections with IP filtering
- Securing clients and integrations
- Operator privileges
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Watcher
- Command line tools
- elasticsearch-certgen
- elasticsearch-certutil
- elasticsearch-create-enrollment-token
- elasticsearch-croneval
- elasticsearch-keystore
- elasticsearch-node
- elasticsearch-reconfigure-node
- elasticsearch-reset-password
- elasticsearch-saml-metadata
- elasticsearch-service-tokens
- elasticsearch-setup-passwords
- elasticsearch-shard
- elasticsearch-syskeygen
- elasticsearch-users
- How to
- Troubleshooting
- Fix common cluster issues
- Diagnose unassigned shards
- Add a missing tier to the system
- Allow Elasticsearch to allocate the data in the system
- Allow Elasticsearch to allocate the index
- Indices mix index allocation filters with data tiers node roles to move through data tiers
- Not enough nodes to allocate all shard replicas
- Total number of shards for an index on a single node exceeded
- Total number of shards per node has been reached
- Troubleshooting corruption
- Fix data nodes out of disk
- Fix master nodes out of disk
- Fix other role nodes out of disk
- Start index lifecycle management
- Start Snapshot Lifecycle Management
- Restore from snapshot
- Troubleshooting broken repositories
- Addressing repeated snapshot policy failures
- Troubleshooting an unstable cluster
- Troubleshooting discovery
- Troubleshooting monitoring
- Troubleshooting transforms
- Troubleshooting Watcher
- Troubleshooting searches
- Troubleshooting shards capacity health issues
- Troubleshooting an unbalanced cluster
- Capture diagnostics
- REST APIs
- API conventions
- Common options
- REST API compatibility
- Autoscaling APIs
- Behavioral Analytics APIs
- Compact and aligned text (CAT) APIs
- cat aliases
- cat allocation
- cat anomaly detectors
- cat component templates
- cat count
- cat data frame analytics
- cat datafeeds
- cat fielddata
- cat health
- cat indices
- cat master
- cat nodeattrs
- cat nodes
- cat pending tasks
- cat plugins
- cat recovery
- cat repositories
- cat segments
- cat shards
- cat snapshots
- cat task management
- cat templates
- cat thread pool
- cat trained model
- cat transforms
- Cluster APIs
- Cluster allocation explain
- Cluster get settings
- Cluster health
- Health
- Cluster reroute
- Cluster state
- Cluster stats
- Cluster update settings
- Nodes feature usage
- Nodes hot threads
- Nodes info
- Prevalidate node removal
- Nodes reload secure settings
- Nodes stats
- Cluster Info
- Pending cluster tasks
- Remote cluster info
- Task management
- Voting configuration exclusions
- Create or update desired nodes
- Get desired nodes
- Delete desired nodes
- Get desired balance
- Reset desired balance
- Cross-cluster replication APIs
- Connector APIs
- Create connector
- Delete connector
- Get connector
- List connectors
- Update connector API key id
- Update connector configuration
- Update connector index name
- Update connector filtering
- Update connector name and description
- Update connector pipeline
- Update connector scheduling
- Update connector service type
- Create connector sync job
- Cancel connector sync job
- Delete connector sync job
- Get connector sync job
- List connector sync jobs
- Check in a connector
- Update connector error
- Update connector last sync stats
- Update connector status
- Check in connector sync job
- Set connector sync job error
- Set connector sync job stats
- Data stream APIs
- Document APIs
- Enrich APIs
- EQL APIs
- ES|QL APIs
- Features APIs
- Fleet APIs
- Graph explore API
- Index APIs
- Alias exists
- Aliases
- Analyze
- Analyze index disk usage
- Clear cache
- Clone index
- Close index
- Create index
- Create or update alias
- Create or update component template
- Create or update index template
- Create or update index template (legacy)
- Delete component template
- Delete dangling index
- Delete alias
- Delete index
- Delete index template
- Delete index template (legacy)
- Exists
- Field usage stats
- Flush
- Force merge
- Get alias
- Get component template
- Get field mapping
- Get index
- Get index settings
- Get index template
- Get index template (legacy)
- Get mapping
- Import dangling index
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists (legacy)
- List dangling indices
- Open index
- Refresh
- Resolve index
- Resolve cluster
- Rollover
- Shrink index
- Simulate index
- Simulate template
- Split index
- Unfreeze index
- Update index settings
- Update mapping
- Index lifecycle management APIs
- Create or update lifecycle policy
- Get policy
- Delete policy
- Move to step
- Remove policy
- Retry policy
- Get index lifecycle management status
- Explain lifecycle
- Start index lifecycle management
- Stop index lifecycle management
- Migrate indices, ILM policies, and legacy, composable and component templates to data tiers routing
- Inference APIs
- Info API
- Ingest APIs
- Licensing APIs
- Logstash APIs
- Machine learning APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendars
- Create datafeeds
- Create filters
- Delete calendars
- Delete datafeeds
- Delete events from calendar
- Delete filters
- Delete forecasts
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Estimate model memory
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get model snapshots
- Get model snapshot upgrade statistics
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Reset jobs
- Revert model snapshots
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filters
- Update jobs
- Update model snapshots
- Upgrade model snapshots
- Machine learning data frame analytics APIs
- Create data frame analytics jobs
- Delete data frame analytics jobs
- Evaluate data frame analytics
- Explain data frame analytics
- Get data frame analytics jobs
- Get data frame analytics jobs stats
- Preview data frame analytics
- Start data frame analytics jobs
- Stop data frame analytics jobs
- Update data frame analytics jobs
- Machine learning trained model APIs
- Clear trained model deployment cache
- Create or update trained model aliases
- Create part of a trained model
- Create trained models
- Create trained model vocabulary
- Delete trained model aliases
- Delete trained models
- Get trained models
- Get trained models stats
- Infer trained model
- Start trained model deployment
- Stop trained model deployment
- Update trained model deployment
- Migration APIs
- Node lifecycle APIs
- Query rules APIs
- Reload search analyzers API
- Repositories metering APIs
- Rollup APIs
- Root API
- Script APIs
- Search APIs
- Search Application APIs
- Searchable snapshots APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Clear privileges cache
- Clear API key cache
- Clear service account token caches
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Create service account tokens
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete service account token
- Delete users
- Disable users
- Enable users
- Enroll Kibana
- Enroll node
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get service accounts
- Get service account credentials
- Get Security settings
- Get token
- Get user privileges
- Get users
- Grant API keys
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect prepare authentication
- OpenID Connect authenticate
- OpenID Connect logout
- Query API key information
- Query User
- Update API key
- Update Security settings
- Bulk update API keys
- SAML prepare authentication
- SAML authenticate
- SAML logout
- SAML invalidate
- SAML complete logout
- SAML service provider metadata
- SSL certificate
- Activate user profile
- Disable user profile
- Enable user profile
- Get user profiles
- Suggest user profile
- Update user profile data
- Has privileges user profile
- Create Cross-Cluster API key
- Update Cross-Cluster API key
- Snapshot and restore APIs
- Snapshot lifecycle management APIs
- SQL APIs
- Synonyms APIs
- Text structure APIs
- Transform APIs
- Usage API
- Watcher APIs
- Definitions
- Migration guide
- Release notes
- Elasticsearch version 8.14.3
- Elasticsearch version 8.14.2
- Elasticsearch version 8.14.1
- Elasticsearch version 8.14.0
- Elasticsearch version 8.13.4
- Elasticsearch version 8.13.3
- Elasticsearch version 8.13.2
- Elasticsearch version 8.13.1
- Elasticsearch version 8.13.0
- Elasticsearch version 8.12.2
- Elasticsearch version 8.12.1
- Elasticsearch version 8.12.0
- Elasticsearch version 8.11.4
- Elasticsearch version 8.11.3
- Elasticsearch version 8.11.2
- Elasticsearch version 8.11.1
- Elasticsearch version 8.11.0
- Elasticsearch version 8.10.4
- Elasticsearch version 8.10.3
- Elasticsearch version 8.10.2
- Elasticsearch version 8.10.1
- Elasticsearch version 8.10.0
- Elasticsearch version 8.9.2
- Elasticsearch version 8.9.1
- Elasticsearch version 8.9.0
- Elasticsearch version 8.8.2
- Elasticsearch version 8.8.1
- Elasticsearch version 8.8.0
- Elasticsearch version 8.7.1
- Elasticsearch version 8.7.0
- Elasticsearch version 8.6.2
- Elasticsearch version 8.6.1
- Elasticsearch version 8.6.0
- Elasticsearch version 8.5.3
- Elasticsearch version 8.5.2
- Elasticsearch version 8.5.1
- Elasticsearch version 8.5.0
- Elasticsearch version 8.4.3
- Elasticsearch version 8.4.2
- Elasticsearch version 8.4.1
- Elasticsearch version 8.4.0
- Elasticsearch version 8.3.3
- Elasticsearch version 8.3.2
- Elasticsearch version 8.3.1
- Elasticsearch version 8.3.0
- Elasticsearch version 8.2.3
- Elasticsearch version 8.2.2
- Elasticsearch version 8.2.1
- Elasticsearch version 8.2.0
- Elasticsearch version 8.1.3
- Elasticsearch version 8.1.2
- Elasticsearch version 8.1.1
- Elasticsearch version 8.1.0
- Elasticsearch version 8.0.1
- Elasticsearch version 8.0.0
- Elasticsearch version 8.0.0-rc2
- Elasticsearch version 8.0.0-rc1
- Elasticsearch version 8.0.0-beta1
- Elasticsearch version 8.0.0-alpha2
- Elasticsearch version 8.0.0-alpha1
- Dependencies and versions
Date histogram aggregation
editDate histogram aggregation
editThis multi-bucket aggregation is similar to the normal
histogram, but it can
only be used with date or date range values. Because dates are represented internally in
Elasticsearch as long values, it is possible, but not as accurate, to use the
normal histogram
on dates as well. The main difference in the two APIs is
that here the interval can be specified using date/time expressions. Time-based
data requires special support because time-based intervals are not always a
fixed length.
Like the histogram, values are rounded down into the closest bucket. For
example, if the interval is a calendar day, 2020-01-03T07:00:01Z
is rounded to
2020-01-03T00:00:00Z
. Values are rounded as follows:
bucket_key = Math.floor(value / interval) * interval
Calendar and fixed intervals
editWhen configuring a date histogram aggregation, the interval can be specified in two manners: calendar-aware time intervals, and fixed time intervals.
Calendar-aware intervals understand that daylight savings changes the length of specific days, months have different amounts of days, and leap seconds can be tacked onto a particular year.
Fixed intervals are, by contrast, always multiples of SI units and do not change based on calendaring context.
Calendar intervals
editCalendar-aware intervals are configured with the calendar_interval
parameter.
You can specify calendar intervals using the unit name, such as month
, or as a
single unit quantity, such as 1M
. For example, day
and 1d
are equivalent.
Multiple quantities, such as 2d
, are not supported.
The accepted calendar intervals are:
-
minute
,1m
- All minutes begin at 00 seconds. One minute is the interval between 00 seconds of the first minute and 00 seconds of the following minute in the specified time zone, compensating for any intervening leap seconds, so that the number of minutes and seconds past the hour is the same at the start and end.
-
hour
,1h
- All hours begin at 00 minutes and 00 seconds. One hour (1h) is the interval between 00:00 minutes of the first hour and 00:00 minutes of the following hour in the specified time zone, compensating for any intervening leap seconds, so that the number of minutes and seconds past the hour is the same at the start and end.
-
day
,1d
- All days begin at the earliest possible time, which is usually 00:00:00 (midnight). One day (1d) is the interval between the start of the day and the start of the following day in the specified time zone, compensating for any intervening time changes.
-
week
,1w
- One week is the interval between the start day_of_week:hour:minute:second and the same day of the week and time of the following week in the specified time zone.
-
month
,1M
-
One month is the interval between the start day of the month and time of
day and the same day of the month and time of the following month in the specified
time zone, so that the day of the month and time of day are the same at the start
and end. Note that the day may differ if an
offset
is used that is longer than a month. -
quarter
,1q
-
One quarter is the interval between the start day of the month and
time of day and the same day of the month and time of day three months later,
so that the day of the month and time of day are the same at the start and end.
-
year
,1y
-
One year is the interval between the start day of the month and time of
day and the same day of the month and time of day the following year in the
specified time zone, so that the date and time are the same at the start and end.
Calendar interval examples
editAs an example, here is an aggregation requesting bucket intervals of a month in calendar time:
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "month", } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', calendar_interval: 'month' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "month" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "month" } } } }
If you attempt to use multiples of calendar units, the aggregation will fail because only singular calendar units are supported:
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "2d", } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', calendar_interval: '2d' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "2d" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "2d" } } } }
{ "error" : { "root_cause" : [...], "type" : "x_content_parse_exception", "reason" : "[1:82] [date_histogram] failed to parse field [calendar_interval]", "caused_by" : { "type" : "illegal_argument_exception", "reason" : "The supplied interval [2d] could not be parsed as a calendar interval.", "stack_trace" : "java.lang.IllegalArgumentException: The supplied interval [2d] could not be parsed as a calendar interval." } } }
Fixed intervals
editFixed intervals are configured with the fixed_interval
parameter.
In contrast to calendar-aware intervals, fixed intervals are a fixed number of SI
units and never deviate, regardless of where they fall on the calendar. One second
is always composed of 1000ms
. This allows fixed intervals to be specified in
any multiple of the supported units.
However, it means fixed intervals cannot express other units such as months, since the duration of a month is not a fixed quantity. Attempting to specify a calendar interval like month or quarter will throw an exception.
The accepted units for fixed intervals are:
-
milliseconds (
ms
) - A single millisecond. This is a very, very small interval.
-
seconds (
s
) - Defined as 1000 milliseconds each.
-
minutes (
m
) - Defined as 60 seconds each (60,000 milliseconds). All minutes begin at 00 seconds.
-
hours (
h
) - Defined as 60 minutes each (3,600,000 milliseconds). All hours begin at 00 minutes and 00 seconds.
-
days (
d
) - Defined as 24 hours (86,400,000 milliseconds). All days begin at the earliest possible time, which is usually 00:00:00 (midnight).
Fixed interval examples
editIf we try to recreate the "month" calendar_interval
from earlier, we can approximate that with
30 fixed days:
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "fixed_interval": "30d", } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', fixed_interval: '30d' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "fixed_interval": "30d" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "fixed_interval": "30d" } } } }
But if we try to use a calendar unit that is not supported, such as weeks, we’ll get an exception:
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": {"field": "date", "fixed_interval": "2w"} } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', fixed_interval: '2w' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "fixed_interval": "2w" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "fixed_interval": "2w" } } } }
{ "error" : { "root_cause" : [...], "type" : "x_content_parse_exception", "reason" : "[1:82] [date_histogram] failed to parse field [fixed_interval]", "caused_by" : { "type" : "illegal_argument_exception", "reason" : "failed to parse setting [date_histogram.fixedInterval] with value [2w] as a time value: unit is missing or unrecognized", "stack_trace" : "java.lang.IllegalArgumentException: failed to parse setting [date_histogram.fixedInterval] with value [2w] as a time value: unit is missing or unrecognized" } } }
Date histogram usage notes
editIn all cases, when the specified end time does not exist, the actual end time is the closest available time after the specified end.
Widely distributed applications must also consider vagaries such as countries that start and stop daylight savings time at 12:01 A.M., so end up with one minute of Sunday followed by an additional 59 minutes of Saturday once a year, and countries that decide to move across the international date line. Situations like that can make irregular time zone offsets seem easy.
As always, rigorous testing, especially around time-change events, will ensure that your time interval specification is what you intend it to be.
To avoid unexpected results, all connected servers and clients must sync to a reliable network time service.
Fractional time values are not supported, but you can address this by
shifting to another time unit (e.g., 1.5h
could instead be specified as 90m
).
You can also specify time values using abbreviations supported by time units parsing.
Keys
editInternally, a date is represented as a 64 bit number representing a timestamp
in milliseconds-since-the-epoch (01/01/1970 midnight UTC). These timestamps are
returned as the key
name of the bucket. The key_as_string
is the same
timestamp converted to a formatted
date string using the format
parameter specification:
If you don’t specify format
, the first date
format specified in the field mapping is used.
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd", } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', calendar_interval: '1M', format: 'yyyy-MM-dd' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd" } } } }
Supports expressive date format pattern |
Response:
{ ... "aggregations": { "sales_over_time": { "buckets": [ { "key_as_string": "2015-01-01", "key": 1420070400000, "doc_count": 3 }, { "key_as_string": "2015-02-01", "key": 1422748800000, "doc_count": 2 }, { "key_as_string": "2015-03-01", "key": 1425168000000, "doc_count": 2 } ] } } }
Time zone
editElasticsearch stores date-times in Coordinated Universal Time (UTC). By default, all bucketing and
rounding is also done in UTC. Use the time_zone
parameter to indicate
that bucketing should use a different time zone.
When you specify a time zone, the following logic is used to determine the bucket the document belongs in:
bucket_key = localToUtc(Math.floor(utcToLocal(value) / interval) * interval))
For example, if the interval is a calendar day and the time zone is
America/New_York
, then the date value 2020-01-03T01:00:01Z
is processed as follows:
-
Converted to EST:
2020-01-02T20:00:01
-
Rounded down to the nearest interval:
2020-01-02T00:00:00
-
Converted back to UTC:
2020-01-02T05:00:00:00Z
When a key_as_string
is generated for the bucket, the key value is stored in America/New_York
time, so it’ll display as "2020-01-02T00:00:00"
.
You can specify time zones as an ISO 8601 UTC offset, such as +01:00
or
-08:00
, or as an IANA time zone ID,
such as America/Los_Angeles
.
Consider the following example:
resp = client.index( index="my-index-000001", id="1", refresh=True, body={"date": "2015-10-01T00:30:00Z"}, ) print(resp) resp = client.index( index="my-index-000001", id="2", refresh=True, body={"date": "2015-10-01T01:30:00Z"}, ) print(resp) resp = client.search( index="my-index-000001", size="0", body={ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", } } } }, ) print(resp)
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { date: '2015-10-01T00:30:00Z' } ) puts response response = client.index( index: 'my-index-000001', id: 2, refresh: true, body: { date: '2015-10-01T01:30:00Z' } ) puts response response = client.search( index: 'my-index-000001', size: 0, body: { aggregations: { by_day: { date_histogram: { field: 'date', calendar_interval: 'day' } } } } ) puts response
{ res, err := es.Index( "my-index-000001", strings.NewReader(`{ "date": "2015-10-01T00:30:00Z" }`), es.Index.WithDocumentID("1"), es.Index.WithRefresh("true"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Index( "my-index-000001", strings.NewReader(`{ "date": "2015-10-01T01:30:00Z" }`), es.Index.WithDocumentID("2"), es.Index.WithRefresh("true"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err) }
PUT my-index-000001/_doc/1?refresh { "date": "2015-10-01T00:30:00Z" } PUT my-index-000001/_doc/2?refresh { "date": "2015-10-01T01:30:00Z" } GET my-index-000001/_search?size=0 { "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day" } } } }
If you don’t specify a time zone, UTC is used. This would result in both of these documents being placed into the same day bucket, which starts at midnight UTC on 1 October 2015:
{ ... "aggregations": { "by_day": { "buckets": [ { "key_as_string": "2015-10-01T00:00:00.000Z", "key": 1443657600000, "doc_count": 2 } ] } } }
If you specify a time_zone
of -01:00
, midnight in that time zone is one hour
before midnight UTC:
resp = client.search( index="my-index-000001", size="0", body={ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "time_zone": "-01:00", } } } }, ) print(resp)
response = client.search( index: 'my-index-000001', size: 0, body: { aggregations: { by_day: { date_histogram: { field: 'date', calendar_interval: 'day', time_zone: '-01:00' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "time_zone": "-01:00" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
GET my-index-000001/_search?size=0 { "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "time_zone": "-01:00" } } } }
Now the first document falls into the bucket for 30 September 2015, while the second document falls into the bucket for 1 October 2015:
{ ... "aggregations": { "by_day": { "buckets": [ { "key_as_string": "2015-09-30T00:00:00.000-01:00", "key": 1443574800000, "doc_count": 1 }, { "key_as_string": "2015-10-01T00:00:00.000-01:00", "key": 1443661200000, "doc_count": 1 } ] } } }
Many time zones shift their clocks for daylight savings time. Buckets
close to the moment when those changes happen can have slightly different sizes
than you would expect from the calendar_interval
or fixed_interval
.
For example, consider a DST start in the CET
time zone: on 27 March 2016 at 2am,
clocks were turned forward 1 hour to 3am local time. If you use day
as the
calendar_interval
, the bucket covering that day will only hold data for 23
hours instead of the usual 24 hours for other buckets. The same is true for
shorter intervals, like a fixed_interval
of 12h
, where you’ll have only a 11h
bucket on the morning of 27 March when the DST shift happens.
Offset
editUse the offset
parameter to change the start value of each bucket by the
specified positive (+
) or negative offset (-
) duration, such as 1h
for
an hour, or 1d
for a day. See Time units for more possible time
duration options.
For example, when using an interval of day
, each bucket runs from midnight
to midnight. Setting the offset
parameter to +6h
changes each bucket
to run from 6am to 6am:
resp = client.index( index="my-index-000001", id="1", refresh=True, body={"date": "2015-10-01T05:30:00Z"}, ) print(resp) resp = client.index( index="my-index-000001", id="2", refresh=True, body={"date": "2015-10-01T06:30:00Z"}, ) print(resp) resp = client.search( index="my-index-000001", size="0", body={ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "offset": "+6h", } } } }, ) print(resp)
response = client.index( index: 'my-index-000001', id: 1, refresh: true, body: { date: '2015-10-01T05:30:00Z' } ) puts response response = client.index( index: 'my-index-000001', id: 2, refresh: true, body: { date: '2015-10-01T06:30:00Z' } ) puts response response = client.search( index: 'my-index-000001', size: 0, body: { aggregations: { by_day: { date_histogram: { field: 'date', calendar_interval: 'day', offset: '+6h' } } } } ) puts response
{ res, err := es.Index( "my-index-000001", strings.NewReader(`{ "date": "2015-10-01T05:30:00Z" }`), es.Index.WithDocumentID("1"), es.Index.WithRefresh("true"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Index( "my-index-000001", strings.NewReader(`{ "date": "2015-10-01T06:30:00Z" }`), es.Index.WithDocumentID("2"), es.Index.WithRefresh("true"), es.Index.WithPretty(), ) fmt.Println(res, err) } { res, err := es.Search( es.Search.WithIndex("my-index-000001"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "offset": "+6h" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err) }
PUT my-index-000001/_doc/1?refresh { "date": "2015-10-01T05:30:00Z" } PUT my-index-000001/_doc/2?refresh { "date": "2015-10-01T06:30:00Z" } GET my-index-000001/_search?size=0 { "aggs": { "by_day": { "date_histogram": { "field": "date", "calendar_interval": "day", "offset": "+6h" } } } }
Instead of a single bucket starting at midnight, the above request groups the documents into buckets starting at 6am:
{ ... "aggregations": { "by_day": { "buckets": [ { "key_as_string": "2015-09-30T06:00:00.000Z", "key": 1443592800000, "doc_count": 1 }, { "key_as_string": "2015-10-01T06:00:00.000Z", "key": 1443679200000, "doc_count": 1 } ] } } }
The start offset
of each bucket is calculated after time_zone
adjustments have been made.
Long offsets over calendar intervals
editIt is typical to use offsets in units smaller than the calendar_interval
. For example,
using offsets in hours when the interval is days, or an offset of days when the interval is months.
If the calendar interval is always of a standard length, or the offset
is less than one unit of the calendar
interval (for example less than +24h
for days
or less than +28d
for months),
then each bucket will have a repeating start. For example +6h
for days
will result in all buckets
starting at 6am each day. However, +30h
will also result in buckets starting at 6am, except when crossing
days that change from standard to summer-savings time or vice-versa.
This situation is much more pronounced for months, where each month has a different length to at least one of its adjacent months. To demonstrate this, consider eight documents each with a date field on the 20th day of each of the eight months from January to August of 2022.
When querying for a date histogram over the calendar interval of months, the response will return one bucket per month, each with a single document.
Each bucket will have a key named after the first day of the month, plus any offset.
For example, the offset of +19d
will result in buckets with names like 2022-01-20
.
"buckets": [ { "key_as_string": "2022-01-20", "key": 1642636800000, "doc_count": 1 }, { "key_as_string": "2022-02-20", "key": 1645315200000, "doc_count": 1 }, { "key_as_string": "2022-03-20", "key": 1647734400000, "doc_count": 1 }, { "key_as_string": "2022-04-20", "key": 1650412800000, "doc_count": 1 }, { "key_as_string": "2022-05-20", "key": 1653004800000, "doc_count": 1 }, { "key_as_string": "2022-06-20", "key": 1655683200000, "doc_count": 1 }, { "key_as_string": "2022-07-20", "key": 1658275200000, "doc_count": 1 }, { "key_as_string": "2022-08-20", "key": 1660953600000, "doc_count": 1 } ]
Increasing the offset to +20d
, each document will appear in a bucket for the previous month,
with all bucket keys ending with the same day of the month, as normal.
However, further increasing to +28d
,
what used to be a February bucket has now become "2022-03-01"
.
"buckets": [ { "key_as_string": "2021-12-29", "key": 1640736000000, "doc_count": 1 }, { "key_as_string": "2022-01-29", "key": 1643414400000, "doc_count": 1 }, { "key_as_string": "2022-03-01", "key": 1646092800000, "doc_count": 1 }, { "key_as_string": "2022-03-29", "key": 1648512000000, "doc_count": 1 }, { "key_as_string": "2022-04-29", "key": 1651190400000, "doc_count": 1 }, { "key_as_string": "2022-05-29", "key": 1653782400000, "doc_count": 1 }, { "key_as_string": "2022-06-29", "key": 1656460800000, "doc_count": 1 }, { "key_as_string": "2022-07-29", "key": 1659052800000, "doc_count": 1 } ]
If we continue to increase the offset, the 30-day months will also shift into the next month, so that 3 of the 8 buckets have different days than the other five. In fact if we keep going, we will find cases where two documents appear in the same month. Documents that were originally 30 days apart can be shifted into the same 31-day month bucket.
For example, for +50d
we see:
"buckets": [ { "key_as_string": "2022-01-20", "key": 1642636800000, "doc_count": 1 }, { "key_as_string": "2022-02-20", "key": 1645315200000, "doc_count": 2 }, { "key_as_string": "2022-04-20", "key": 1650412800000, "doc_count": 2 }, { "key_as_string": "2022-06-20", "key": 1655683200000, "doc_count": 2 }, { "key_as_string": "2022-08-20", "key": 1660953600000, "doc_count": 1 } ]
It is therefore always important when using offset
with calendar_interval
bucket sizes
to understand the consequences of using offsets larger than the interval size.
More examples:
-
If the goal is to, for example, have an annual histogram where each year starts on the 5th February,
you could use
calendar_interval
ofyear
andoffset
of+33d
, and each year will be shifted identically, because the offset includes only January, which is the same length every year. However, if the goal is to have the year start on the 5th March instead, this technique will not work because the offset includes February, which changes length every four years. - If you want a quarterly histogram starting on a date within the first month of the year, it will work, but as soon as you push the start date into the second month by having an offset longer than a month, the quarters will all start on different dates.
Keyed response
editSetting the keyed
flag to true
associates a unique string key with each
bucket and returns the ranges as a hash rather than an array:
resp = client.search( index="sales", size="0", body={ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd", "keyed": True, } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sales_over_time: { date_histogram: { field: 'date', calendar_interval: '1M', format: 'yyyy-MM-dd', keyed: true } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd", "keyed": true } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
POST /sales/_search?size=0 { "aggs": { "sales_over_time": { "date_histogram": { "field": "date", "calendar_interval": "1M", "format": "yyyy-MM-dd", "keyed": true } } } }
Response:
{ ... "aggregations": { "sales_over_time": { "buckets": { "2015-01-01": { "key_as_string": "2015-01-01", "key": 1420070400000, "doc_count": 3 }, "2015-02-01": { "key_as_string": "2015-02-01", "key": 1422748800000, "doc_count": 2 }, "2015-03-01": { "key_as_string": "2015-03-01", "key": 1425168000000, "doc_count": 2 } } } } }
Scripts
editIf the data in your documents doesn’t exactly match what you’d like to aggregate, use a runtime field . For example, if the revenue for promoted sales should be recognized a day after the sale date:
resp = client.search( index="sales", size="0", body={ "runtime_mappings": { "date.promoted_is_tomorrow": { "type": "date", "script": "\n long date = doc['date'].value.toInstant().toEpochMilli();\n if (doc['promoted'].value) {\n date += 86400;\n }\n emit(date);\n ", } }, "aggs": { "sales_over_time": { "date_histogram": { "field": "date.promoted_is_tomorrow", "calendar_interval": "1M", } } }, }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { runtime_mappings: { 'date.promoted_is_tomorrow' => { type: 'date', script: "\n long date = doc['date'].value.toInstant().toEpochMilli();\n if (doc['promoted'].value) {\n date += 86400;\n }\n emit(date);\n " } }, aggregations: { sales_over_time: { date_histogram: { field: 'date.promoted_is_tomorrow', calendar_interval: '1M' } } } } ) puts response
POST /sales/_search?size=0 { "runtime_mappings": { "date.promoted_is_tomorrow": { "type": "date", "script": """ long date = doc['date'].value.toInstant().toEpochMilli(); if (doc['promoted'].value) { date += 86400; } emit(date); """ } }, "aggs": { "sales_over_time": { "date_histogram": { "field": "date.promoted_is_tomorrow", "calendar_interval": "1M" } } } }
Parameters
editYou can control the order of the returned
buckets using the order
settings and filter the returned buckets based on a min_doc_count
setting
(by default all buckets between the first
bucket that matches documents and the last one are returned). This histogram
also supports the extended_bounds
setting, which enables extending the bounds of the histogram beyond the data
itself, and hard_bounds
that limits the histogram to specified bounds.
For more information, see
Extended Bounds
and
Hard Bounds
.
Missing value
editThe missing
parameter defines how to treat documents that are missing a value.
By default, they are ignored, but it is also possible to treat them as if they
have a value.
resp = client.search( index="sales", size="0", body={ "aggs": { "sale_date": { "date_histogram": { "field": "date", "calendar_interval": "year", "missing": "2000/01/01", } } } }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { aggregations: { sale_date: { date_histogram: { field: 'date', calendar_interval: 'year', missing: '2000/01/01' } } } } ) puts response
res, err := es.Search( es.Search.WithIndex("sales"), es.Search.WithBody(strings.NewReader(`{ "aggs": { "sale_date": { "date_histogram": { "field": "date", "calendar_interval": "year", "missing": "2000/01/01" } } } }`)), es.Search.WithSize(0), es.Search.WithPretty(), ) fmt.Println(res, err)
Order
editBy default the returned buckets are sorted by their key
ascending, but you can
control the order using
the order
setting. This setting supports the same order
functionality as
Terms Aggregation
.
Using a script to aggregate by day of the week
editWhen you need to aggregate the results by day of the week, run a terms
aggregation on a runtime field that returns the day of the week:
resp = client.search( index="sales", size="0", body={ "runtime_mappings": { "date.day_of_week": { "type": "keyword", "script": "emit(doc['date'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ROOT))", } }, "aggs": {"day_of_week": {"terms": {"field": "date.day_of_week"}}}, }, ) print(resp)
response = client.search( index: 'sales', size: 0, body: { runtime_mappings: { 'date.day_of_week' => { type: 'keyword', script: "emit(doc['date'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ROOT))" } }, aggregations: { day_of_week: { terms: { field: 'date.day_of_week' } } } } ) puts response
POST /sales/_search?size=0 { "runtime_mappings": { "date.day_of_week": { "type": "keyword", "script": "emit(doc['date'].value.dayOfWeekEnum.getDisplayName(TextStyle.FULL, Locale.ROOT))" } }, "aggs": { "day_of_week": { "terms": { "field": "date.day_of_week" } } } }
Response:
{ ... "aggregations": { "day_of_week": { "doc_count_error_upper_bound": 0, "sum_other_doc_count": 0, "buckets": [ { "key": "Sunday", "doc_count": 4 }, { "key": "Thursday", "doc_count": 3 } ] } } }
The response will contain all the buckets having the relative day of the week as key : 1 for Monday, 2 for Tuesday… 7 for Sunday.
On this page