- Elasticsearch Guide: other versions:
- Elasticsearch introduction
- Getting started with Elasticsearch
- Set up Elasticsearch
- Installing Elasticsearch
- Configuring Elasticsearch
- Important Elasticsearch configuration
- Important System Configuration
- Bootstrap Checks
- Heap size check
- File descriptor check
- Memory lock check
- Maximum number of threads check
- Max file size check
- Maximum size virtual memory check
- Maximum map count check
- Client JVM check
- Use serial collector check
- System call filter check
- OnError and OnOutOfMemoryError checks
- Early-access check
- G1GC check
- All permission check
- Discovery configuration check
- Starting Elasticsearch
- Stopping Elasticsearch
- Adding nodes to your cluster
- Full-cluster restart and rolling restart
- Set up X-Pack
- Configuring X-Pack Java Clients
- Bootstrap Checks for X-Pack
- Upgrade Elasticsearch
- Aggregations
- Metrics Aggregations
- Avg Aggregation
- Weighted Avg Aggregation
- Cardinality Aggregation
- Extended Stats Aggregation
- Geo Bounds Aggregation
- Geo Centroid Aggregation
- Max Aggregation
- Min Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Scripted Metric Aggregation
- Stats Aggregation
- Sum Aggregation
- Top Hits Aggregation
- Value Count Aggregation
- Median Absolute Deviation Aggregation
- Bucket Aggregations
- Adjacency Matrix Aggregation
- Auto-interval Date Histogram Aggregation
- Children Aggregation
- Composite Aggregation
- Date histogram aggregation
- Date Range Aggregation
- Diversified Sampler Aggregation
- Filter Aggregation
- Filters Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- GeoTile Grid Aggregation
- Global Aggregation
- Histogram Aggregation
- IP Range Aggregation
- Missing Aggregation
- Nested Aggregation
- Parent Aggregation
- Range Aggregation
- Rare Terms Aggregation
- Reverse nested Aggregation
- Sampler Aggregation
- Significant Terms Aggregation
- Significant Text Aggregation
- Terms Aggregation
- Subtleties of bucketing range fields
- Pipeline Aggregations
- Avg Bucket Aggregation
- Derivative Aggregation
- Max Bucket Aggregation
- Min Bucket Aggregation
- Sum Bucket Aggregation
- Stats Bucket Aggregation
- Extended Stats Bucket Aggregation
- Percentiles Bucket Aggregation
- Moving Average Aggregation
- Moving Function Aggregation
- Cumulative Sum Aggregation
- Cumulative Cardinality Aggregation
- Bucket Script Aggregation
- Bucket Selector Aggregation
- Bucket Sort Aggregation
- Serial Differencing Aggregation
- Matrix Aggregations
- Caching heavy aggregations
- Returning only aggregation results
- Aggregation Metadata
- Returning the type of the aggregation
- Metrics Aggregations
- Query DSL
- Search across clusters
- Scripting
- Mapping
- Analysis
- Anatomy of an analyzer
- Testing analyzers
- Analyzers
- Normalizers
- Tokenizers
- Char Group Tokenizer
- Classic Tokenizer
- Edge n-gram tokenizer
- Keyword Tokenizer
- Letter Tokenizer
- Lowercase Tokenizer
- N-gram tokenizer
- Path Hierarchy Tokenizer
- Path Hierarchy Tokenizer Examples
- Pattern Tokenizer
- Simple Pattern Tokenizer
- Simple Pattern Split Tokenizer
- Standard Tokenizer
- Thai Tokenizer
- UAX URL Email Tokenizer
- Whitespace Tokenizer
- Token Filters
- Apostrophe
- ASCII folding
- CJK bigram
- CJK width
- Classic
- Common grams
- Conditional
- Decimal digit
- Delimited payload
- Dictionary decompounder
- Edge n-gram
- Elision
- Fingerprint
- Flatten Graph Token Filter
- Hunspell Token Filter
- Hyphenation decompounder
- Keep types
- Keep words
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Length Token Filter
- Limit Token Count Token Filter
- Lowercase Token Filter
- MinHash Token Filter
- Multiplexer Token Filter
- N-gram
- Normalization Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Phonetic Token Filter
- Porter Stem Token Filter
- Predicate Token Filter Script
- Remove Duplicates Token Filter
- Reverse Token Filter
- Shingle Token Filter
- Snowball Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Stop Token Filter
- Synonym Token Filter
- Synonym Graph Token Filter
- Trim Token Filter
- Truncate Token Filter
- Unique Token Filter
- Uppercase Token Filter
- Word Delimiter Token Filter
- Word Delimiter Graph Token Filter
- Character Filters
- Modules
- Index modules
- Ingest node
- Pipeline Definition
- Accessing Data in Pipelines
- Conditional Execution in Pipelines
- Handling Failures in Pipelines
- Processors
- Append Processor
- Bytes Processor
- Circle Processor
- Convert Processor
- Date Processor
- Date Index Name Processor
- Dissect Processor
- Dot Expander Processor
- Drop Processor
- Fail Processor
- Foreach Processor
- GeoIP Processor
- Grok Processor
- Gsub Processor
- HTML Strip Processor
- Join Processor
- JSON Processor
- KV Processor
- Lowercase Processor
- Pipeline Processor
- Remove Processor
- Rename Processor
- Script Processor
- Set Processor
- Set Security User Processor
- Split Processor
- Sort Processor
- Trim Processor
- Uppercase Processor
- URL Decode Processor
- User Agent processor
- Managing the index lifecycle
- Getting started with index lifecycle management
- Policy phases and actions
- Set up index lifecycle management policy
- Using policies to manage index rollover
- Update policy
- Index lifecycle error handling
- Restoring snapshots of managed indices
- Start and stop index lifecycle management
- Using ILM with existing indices
- Getting started with snapshot lifecycle management
- SQL access
- Overview
- Getting Started with SQL
- Conventions and Terminology
- Security
- SQL REST API
- SQL Translate API
- SQL CLI
- SQL JDBC
- SQL ODBC
- SQL Client Applications
- SQL Language
- Functions and Operators
- Comparison Operators
- Logical Operators
- Math Operators
- Cast Operators
- LIKE and RLIKE Operators
- Aggregate Functions
- Grouping Functions
- Date/Time and Interval Functions and Operators
- Full-Text Search Functions
- Mathematical Functions
- String Functions
- Type Conversion Functions
- Geo Functions
- Conditional Functions And Expressions
- System Functions
- Reserved keywords
- SQL Limitations
- Monitor a cluster
- Frozen indices
- Roll up or transform your data
- Set up a cluster for high availability
- Secure a cluster
- Overview
- Configuring security
- User authentication
- Built-in users
- Internal users
- Token-based authentication services
- Realms
- Realm chains
- Active Directory user authentication
- File-based user authentication
- LDAP user authentication
- Native user authentication
- OpenID Connect authentication
- PKI user authentication
- SAML authentication
- Kerberos authentication
- Integrating with other authentication systems
- Enabling anonymous access
- Controlling the user cache
- Configuring SAML single-sign-on on the Elastic Stack
- Configuring single sign-on to the Elastic Stack using OpenID Connect
- User authorization
- Built-in roles
- Defining roles
- Security privileges
- Document level security
- Field level security
- Granting privileges for indices and aliases
- Mapping users and groups to roles
- Setting up field and document level security
- Submitting requests on behalf of other users
- Configuring authorization delegation
- Customizing roles and authorization
- Enabling audit logging
- Encrypting communications
- Restricting connections with IP filtering
- Cross cluster search, clients, and integrations
- Tutorial: Getting started with security
- Tutorial: Encrypting communications
- Troubleshooting
- Some settings are not returned via the nodes settings API
- Authorization exceptions
- Users command fails due to extra arguments
- Users are frequently locked out of Active Directory
- Certificate verification fails for curl on Mac
- SSLHandshakeException causes connections to fail
- Common SSL/TLS exceptions
- Common Kerberos exceptions
- Common SAML issues
- Internal Server Error in Kibana
- Setup-passwords command fails due to connection failure
- Failures due to relocation of the configuration files
- Limitations
- Alerting on cluster and index events
- Command line tools
- How To
- Testing
- Glossary of terms
- REST APIs
- API conventions
- cat APIs
- Cluster APIs
- Cross-cluster replication APIs
- Document APIs
- Explore API
- Index APIs
- Add index alias
- Analyze
- Clear cache
- Clone index
- Close index
- Create index
- Delete index
- Delete index alias
- Delete index template
- Flush
- Force merge
- Freeze index
- Get field mapping
- Get index
- Get index alias
- Get index settings
- Get index template
- Get mapping
- Index alias exists
- Index exists
- Index recovery
- Index segments
- Index shard stores
- Index stats
- Index template exists
- Open index
- Put index template
- Put mapping
- Refresh
- Rollover index
- Shrink index
- Split index
- Synced flush
- Type exists
- Unfreeze index
- Update index alias
- Update index settings
- Index lifecycle management API
- Ingest APIs
- Info API
- Licensing APIs
- Machine learning anomaly detection APIs
- Add events to calendar
- Add jobs to calendar
- Close jobs
- Create jobs
- Create calendar
- Create datafeeds
- Create filter
- Delete calendar
- Delete datafeeds
- Delete events from calendar
- Delete filter
- Delete forecast
- Delete jobs
- Delete jobs from calendar
- Delete model snapshots
- Delete expired data
- Find file structure
- Flush jobs
- Forecast jobs
- Get buckets
- Get calendars
- Get categories
- Get datafeeds
- Get datafeed statistics
- Get influencers
- Get jobs
- Get job statistics
- Get machine learning info
- Get model snapshots
- Get overall buckets
- Get scheduled events
- Get filters
- Get records
- Open jobs
- Post data to jobs
- Preview datafeeds
- Revert model snapshots
- Set upgrade mode
- Start datafeeds
- Stop datafeeds
- Update datafeeds
- Update filter
- Update jobs
- Update model snapshots
- Machine learning data frame analytics APIs
- Migration APIs
- Reload search analyzers
- Rollup APIs
- Search APIs
- Security APIs
- Authenticate
- Change passwords
- Clear cache
- Clear roles cache
- Create API keys
- Create or update application privileges
- Create or update role mappings
- Create or update roles
- Create or update users
- Delegate PKI authentication
- Delete application privileges
- Delete role mappings
- Delete roles
- Delete users
- Disable users
- Enable users
- Get API key information
- Get application privileges
- Get builtin privileges
- Get role mappings
- Get roles
- Get token
- Get users
- Has privileges
- Invalidate API key
- Invalidate token
- OpenID Connect Prepare Authentication API
- OpenID Connect authenticate API
- OpenID Connect logout API
- SSL certificate
- Snapshot lifecycle management API
- Transform APIs
- Watcher APIs
- Definitions
- Release highlights
- Breaking changes
- Release notes
- Elasticsearch version 7.4.2
- Elasticsearch version 7.4.1
- Elasticsearch version 7.4.0
- Elasticsearch version 7.3.2
- Elasticsearch version 7.3.1
- Elasticsearch version 7.3.0
- Elasticsearch version 7.2.1
- Elasticsearch version 7.2.0
- Elasticsearch version 7.1.1
- Elasticsearch version 7.1.0
- Elasticsearch version 7.0.0
- Elasticsearch version 7.0.0-rc2
- Elasticsearch version 7.0.0-rc1
- Elasticsearch version 7.0.0-beta1
- Elasticsearch version 7.0.0-alpha2
- Elasticsearch version 7.0.0-alpha1
Create rollup jobs API
editCreate rollup jobs API
editCreates a rollup job.
This functionality is in technical preview and may be changed or removed in a future release. Elastic will work to fix any issues, but features in technical preview are not subject to the support SLA of official GA features.
Request
editPUT _rollup/job/<job_id>
Prerequisites
edit-
If the Elasticsearch security features are enabled, you must have
manage
ormanage_rollup
cluster privileges to use this API. For more information, see Security privileges.
Description
editThe rollup job configuration contains all the details about how the job should run, when it indexes documents, and what future queries will be able to execute against the rollup index.
There are three main sections to the job configuration: the logistical details about the job (cron schedule, etc), the fields that are used for grouping, and what metrics to collect for each group.
Jobs are created in a STOPPED
state. You can start them with the
start rollup jobs API.
Path parameters
edit-
<job_id>
- (Required, string) Identifier for the rollup job. This can be any alphanumeric string and uniquely identifies the data that is associated with the rollup job. The ID is persistent; it is stored with the rolled up data. If you create a job, let it run for a while, then delete the job, the data that the job rolled up is still be associated with this job ID. You cannot create a new job with the same ID since that could lead to problems with mismatched job configurations.
Request body
edit-
cron
- (Required, string) A cron string which defines the intervals when the rollup job should be executed. When the interval triggers, the indexer attempts to rollup the data in the index pattern. The cron pattern is unrelated to the time interval of the data being rolled up. For example, you may wish to create hourly rollups of your document but to only run the indexer on a daily basis at midnight, as defined by the cron. The cron pattern is defined just like a Watcher cron schedule.
-
groups
-
(Required, object) Defines the grouping fields and aggregations that are defined for this rollup job. These fields will then be available later for aggregating into buckets.
These aggs and fields can be used in any combination. Think of the
groups
configuration as defining a set of tools that can later be used in aggregations to partition the data. Unlike raw data, we have to think ahead to which fields and aggregations might be used. Rollups provide enough flexibility that you simply need to determine which fields are needed, not in what order they are needed.There are three types of groupings currently available:
-
date_histogram
-
(Required, object) A date histogram group aggregates a
date
field into time-based buckets. This group is mandatory; you currently cannot rollup documents without a timestamp and adate_histogram
group. Thedate_histogram
group has several parameters:-
field
- (Required, string) The date field that is to be rolled up.
-
calendar_interval
orfixed_interval
-
(Required, time units) The interval of time buckets to be generated when rolling up. For example,
60m
produces 60 minute (hourly) rollups. This follows standard time formatting syntax as used elsewhere in Elasticsearch. The interval defines the minimum interval that can be aggregated only. If hourly (60m
) intervals are configured, rollup search can execute aggregations with 60m or greater (weekly, monthly, etc) intervals. So define the interval as the smallest unit that you wish to later query. For more information about the difference between calendar and fixed time intervals, see Calendar vs fixed time intervals.Smaller, more granular intervals take up proportionally more space.
-
delay
-
(Optional,time units) How long to wait before rolling up new documents. By default, the indexer attempts to roll up all data that is available. However, it is not uncommon for data to arrive out of order, sometimes even a few days late. The indexer is unable to deal with data that arrives after a time-span has been rolled up. That is to say, there is no provision to update already-existing rollups.
Instead, you should specify a
delay
that matches the longest period of time you expect out-of-order data to arrive. For example, adelay
of1d
instructs the indexer to roll up documents up tonow - 1d
, which provides a day of buffer time for out-of-order documents to arrive. -
time_zone
-
(Optional, string) Defines what time_zone the rollup documents are stored as.
Unlike raw data, which can shift timezones on the fly, rolled documents have
to be stored with a specific timezone. By default, rollup documents are stored
in
UTC
.
-
-
terms
-
(Optional, object) The terms group can be used on
keyword
or numeric fields to allow bucketing via theterms
aggregation at a later point. The indexer enumerates and stores all values of a field for each time-period. This can be potentially costly for high-cardinality groups such as IP addresses, especially if the time-bucket is particularly sparse.While it is unlikely that a rollup will ever be larger in size than the raw data, defining
terms
groups on multiple high-cardinality fields can effectively reduce the compression of a rollup to a large extent. You should be judicious which high-cardinality fields are included for that reason.The
terms
group has a single parameter:-
fields
-
(Required, string) The set of fields that you wish to collect terms for. This
array can contain fields that are both
keyword
and numerics. Order does not matter.
-
-
histogram
-
(Optional, object) The histogram group aggregates one or more numeric fields into numeric histogram intervals.
The
histogram
group has a two parameters:-
fields
- (Required, array) The set of fields that you wish to build histograms for. All fields specified must be some kind of numeric. Order does not matter.
-
interval
-
(Required, integer) The interval of histogram buckets to be generated when
rolling up. For example, a value of
5
creates buckets that are five units wide (0-5
,5-10
, etc). Note that only one interval can be specified in thehistogram
group, meaning that all fields being grouped via the histogram must share the same interval.
-
-
-
index_pattern
-
(Required, string) The index or index pattern to roll up. Supports wildcard-style patterns (
logstash-*
). The job will attempt to rollup the entire index or index-pattern.The
index_pattern
cannot be a pattern that would also match the destinationrollup_index
. For example, the patternfoo-*
would match the rollup indexfoo-rollup
. This situation would cause problems because the rollup job would attempt to rollup its own data at runtime. If you attempt to configure a pattern that matches therollup_index
, an exception occurs to prevent this behavior.
-
metrics
-
(Optional, object) Defines the metrics to collect for each grouping tuple. By default, only the doc_counts are collected for each group. To make rollup useful, you will often add metrics like averages, mins, maxes, etc. Metrics are defined on a per-field basis and for each field you configure which metric should be collected.
The
metrics
configuration accepts an array of objects, where each object has two parameters:-
field
- (Required, string) The field to collect metrics for. This must be a numeric of some kind.
-
metrics
-
(Required, array) An array of metrics to collect for the field. At least one
metric must be configured. Acceptable metrics are
min
,max
,sum
,avg
, andvalue_count
.
-
-
page_size
- (Required, integer) The number of bucket results that are processed on each iteration of the rollup indexer. A larger value tends to execute faster, but requires more memory during processing. This value has no effect on how the data is rolled up; it is merely used for tweaking the speed or memory cost of the indexer.
-
rollup_index
- (Required, string) The index that contains the rollup results. The index can be shared with other rollup jobs. The data is stored so that it doesn’t interfere with unrelated jobs.
Example
editThe following example creates a rollup job named sensor
, targeting the
sensor-*
index pattern:
PUT _rollup/job/sensor { "index_pattern": "sensor-*", "rollup_index": "sensor_rollup", "cron": "*/30 * * * * ?", "page_size" :1000, "groups" : { "date_histogram": { "field": "timestamp", "fixed_interval": "1h", "delay": "7d" }, "terms": { "fields": ["node"] } }, "metrics": [ { "field": "temperature", "metrics": ["min", "max", "sum"] }, { "field": "voltage", "metrics": ["avg"] } ] }
This configuration enables date histograms to be used on the |
|
This configuration defines metrics over two fields: |
When the job is created, you receive the following results:
{ "acknowledged": true }