- Elasticsearch Guide: other versions:
- Getting Started
- Setup
- Breaking changes
- API Conventions
- Document APIs
- Search APIs
- Search
- URI Search
- Request Body Search
- Search Template
- Search Shards API
- Aggregations
- Min Aggregation
- Max Aggregation
- Sum Aggregation
- Avg Aggregation
- Stats Aggregation
- Extended Stats Aggregation
- Value Count Aggregation
- Percentiles Aggregation
- Percentile Ranks Aggregation
- Cardinality Aggregation
- Geo Bounds Aggregation
- Top hits Aggregation
- Scripted Metric Aggregation
- Global Aggregation
- Filter Aggregation
- Filters Aggregation
- Missing Aggregation
- Nested Aggregation
- Reverse nested Aggregation
- Children Aggregation
- Terms Aggregation
- Significant Terms Aggregation
- Range Aggregation
- Date Range Aggregation
- IPv4 Range Aggregation
- Histogram Aggregation
- Date Histogram Aggregation
- Geo Distance Aggregation
- GeoHash grid Aggregation
- Facets
- Suggesters
- Multi Search API
- Count API
- Search Exists API
- Validate API
- Explain API
- Percolator
- More Like This API
- Indices APIs
- Create Index
- Delete Index
- Get Index
- Indices Exists
- Open / Close Index API
- Put Mapping
- Get Mapping
- Get Field Mapping
- Types Exists
- Delete Mapping
- Index Aliases
- Update Indices Settings
- Get Settings
- Analyze
- Index Templates
- Warmers
- Status
- Indices Stats
- Indices Segments
- Indices Recovery
- Clear Cache
- Flush
- Refresh
- Optimize
- Upgrade
- Shadow replica indices
- cat APIs
- Cluster APIs
- Query DSL
- Queries
- Match Query
- Multi Match Query
- Bool Query
- Boosting Query
- Common Terms Query
- Constant Score Query
- Dis Max Query
- Filtered Query
- Fuzzy Like This Query
- Fuzzy Like This Field Query
- Function Score Query
- Fuzzy Query
- GeoShape Query
- Has Child Query
- Has Parent Query
- Ids Query
- Indices Query
- Match All Query
- More Like This Query
- Nested Query
- Prefix Query
- Query String Query
- Simple Query String Query
- Range Query
- Regexp Query
- Span First Query
- Span Multi Term Query
- Span Near Query
- Span Not Query
- Span Or Query
- Span Term Query
- Term Query
- Terms Query
- Top Children Query
- Wildcard Query
- Minimum Should Match
- Multi Term Query Rewrite
- Template Query
- Filters
- And Filter
- Bool Filter
- Exists Filter
- Geo Bounding Box Filter
- Geo Distance Filter
- Geo Distance Range Filter
- Geo Polygon Filter
- GeoShape Filter
- Geohash Cell Filter
- Has Child Filter
- Has Parent Filter
- Ids Filter
- Indices Filter
- Limit Filter
- Match All Filter
- Missing Filter
- Nested Filter
- Not Filter
- Or Filter
- Prefix Filter
- Query Filter
- Range Filter
- Regexp Filter
- Script Filter
- Term Filter
- Terms Filter
- Type Filter
- Queries
- Mapping
- Analysis
- Analyzers
- Tokenizers
- Token Filters
- Standard Token Filter
- ASCII Folding Token Filter
- Length Token Filter
- Lowercase Token Filter
- Uppercase Token Filter
- NGram Token Filter
- Edge NGram Token Filter
- Porter Stem Token Filter
- Shingle Token Filter
- Stop Token Filter
- Word Delimiter Token Filter
- Stemmer Token Filter
- Stemmer Override Token Filter
- Keyword Marker Token Filter
- Keyword Repeat Token Filter
- KStem Token Filter
- Snowball Token Filter
- Phonetic Token Filter
- Synonym Token Filter
- Compound Word Token Filter
- Reverse Token Filter
- Elision Token Filter
- Truncate Token Filter
- Unique Token Filter
- Pattern Capture Token Filter
- Pattern Replace Token Filter
- Trim Token Filter
- Limit Token Count Token Filter
- Hunspell Token Filter
- Common Grams Token Filter
- Normalization Token Filter
- CJK Width Token Filter
- CJK Bigram Token Filter
- Delimited Payload Token Filter
- Keep Words Token Filter
- Keep Types Token Filter
- Classic Token Filter
- Apostrophe Token Filter
- Character Filters
- ICU Analysis Plugin
- Modules
- Index Modules
- Testing
- Glossary of terms
WARNING: Version 1.5 of Elasticsearch has passed its EOL date.
This documentation is no longer being maintained and may be removed. If you are running this version, we strongly advise you to upgrade. For the latest information, see the current release documentation.
GeoHash grid Aggregation
editGeoHash grid Aggregation
editA multi-bucket aggregation that works on geo_point
fields and groups points into buckets that represent cells in a grid.
The resulting grid can be sparse and only contains cells that have matching data. Each cell is labeled using a geohash which is of user-definable precision.
- High precision geohashes have a long string length and represent cells that cover only a small area.
- Low precision geohashes have a short string length and represent cells that each cover a large area.
Geohashes used in this aggregation can have a choice of precision between 1 and 12.
The highest-precision geohash of length 12 produces cells that cover less than a square metre of land and so high-precision requests can be very costly in terms of RAM and result sizes. Please see the example below on how to first filter the aggregation to a smaller geographic area before requesting high-levels of detail.
The specified field must be of type geo_point
(which can only be set explicitly in the mappings) and it can also hold an array of geo_point
fields, in which case all points will be taken into account during aggregation.
Simple low-precision request
edit{ "aggregations" : { "myLarge-GrainGeoHashGrid" : { "geohash_grid" : { "field" : "location", "precision" : 3 } } } }
Response:
{ "aggregations": { "myLarge-GrainGeoHashGrid": { "buckets": [ { "key": "svz", "doc_count": 10964 }, { "key": "sv8", "doc_count": 3198 } ] } } }
High-precision requests
editWhen requesting detailed buckets (typically for displaying a "zoomed in" map) a filter like geo_bounding_box should be applied to narrow the subject area otherwise potentially millions of buckets will be created and returned.
{ "aggregations" : { "zoomedInView" : { "filter" : { "geo_bounding_box" : { "location" : { "top_left" : "51.73, 0.9", "bottom_right" : "51.55, 1.1" } } }, "aggregations":{ "zoom1":{ "geohash_grid" : { "field":"location", "precision":8, } } } } } }
Cell dimensions at the equator
editThe table below shows the metric dimensions for cells covered by various string lengths of geohash. Cell dimensions vary with latitude and so the table is for the worst-case scenario at the equator.
GeoHash length |
Area width x height |
1 |
5,009.4km x 4,992.6km |
2 |
1,252.3km x 624.1km |
3 |
156.5km x 156km |
4 |
39.1km x 19.5km |
5 |
4.9km x 4.9km |
6 |
1.2km x 609.4m |
7 |
152.9m x 152.4m |
8 |
38.2m x 19m |
9 |
4.8m x 4.8m |
10 |
1.2m x 59.5cm |
11 |
14.9cm x 14.9cm |
12 |
3.7cm x 1.9cm |
Options
edit
field |
Mandatory. The name of the field indexed with GeoPoints. |
precision |
Optional. The string length of the geohashes used to define cells/buckets in the results. Defaults to 5. |
size |
Optional. The maximum number of geohash buckets to return
(defaults to 10,000). When results are trimmed, buckets are
prioritised based on the volumes of documents they contain.
A value of |
shard_size |
Optional. To allow for more accurate counting of the top cells
returned in the final result the aggregation defaults to
returning |
On this page