New

The executive guide to generative AI

Read more

Multi termvectors API

edit

Multi termvectors API allows to get multiple termvectors based on an index, type and id. The response includes a docs array with all the fetched termvectors, each element having the structure provided by the termvectors API. Here is an example:

curl 'localhost:9200/_mtermvectors' -d '{
   "docs": [
      {
         "_index": "testidx",
         "_type": "test",
         "_id": "2",
         "term_statistics": true
      },
      {
         "_index": "testidx",
         "_type": "test",
         "_id": "1",
         "fields": [
            "text"
         ]
      }
   ]
}'

See the termvectors API for a description of possible parameters.

The _mtermvectors endpoint can also be used against an index (in which case it is not required in the body):

curl 'localhost:9200/testidx/_mtermvectors' -d '{
   "docs": [
      {
         "_type": "test",
         "_id": "2",
         "fields": [
            "text"
         ],
         "term_statistics": true
      },
      {
         "_type": "test",
         "_id": "1"
      }
   ]
}'

And type:

curl 'localhost:9200/testidx/test/_mtermvectors' -d '{
   "docs": [
      {
         "_id": "2",
         "fields": [
            "text"
         ],
         "term_statistics": true
      },
      {
         "_id": "1"
      }
   ]
}'

If all requested documents are on same index and have same type and also the parameters are the same, the request can be simplified:

curl 'localhost:9200/testidx/test/_mtermvectors' -d '{
    "ids" : ["1", "2"],
    "parameters": {
    	"fields": [
         	"text"
      	],
      	"term_statistics": true,
      	
    }
}'

Parameters can also be set by passing them as uri parameters (see termvectors). uri parameters are the default parameters and are overwritten by any parameter setting defined in the body.

Was this helpful?
Feedback