- Journalbeat Reference for 6.5-7.15:
- Overview
- Getting started with Journalbeat
- Setting up and running Journalbeat
- Configuring Journalbeat
- Configure inputs
- Specify general settings
- Configure the internal queue
- Configure the output
- Configure index lifecycle management
- Specify SSL settings
- Filter and enhance the exported data
- Define processors
- Add cloud metadata
- Add fields
- Add labels
- Add the local time zone
- Add tags
- Decode CSV fields
- Decode JSON fields
- Decode Base64 fields
- Decompress gzip fields
- Community ID Network Flow Hash
- Convert
- Drop events
- Drop fields from events
- Extract array
- Keep fields from events
- Registered Domain
- Rename fields from events
- Add Kubernetes metadata
- Add Docker metadata
- Add Host metadata
- Add Observer metadata
- Dissect strings
- DNS Reverse Lookup
- Add process metadata
- Script Processor
- Timestamp
- Parse data by using ingest node
- Enrich events with geoIP information
- Configure project paths
- Configure the Kibana endpoint
- Load the Elasticsearch index template
- Configure logging
- Use environment variables in the configuration
- YAML tips and gotchas
- Regular expression support
- HTTP Endpoint
- journalbeat.reference.yml
- Exported fields
- Monitoring Journalbeat
- Securing Journalbeat
- Troubleshooting
ECS fields
editECS fields
editECS Fields.
-
@timestamp
-
Date/time when the event originated. This is the date/time extracted from the event, typically representing when the event was generated by the source. If the event source has no original timestamp, this value is typically populated by the first time the event was received by the pipeline. Required field for all events.
type: date
example: 2016-05-23T08:05:34.853Z
required: True
-
labels
-
Custom key/value pairs. Can be used to add meta information to events. Should not contain nested objects. All values are stored as keyword. Example:
docker
andk8s
labels.type: object
example: {application: foo-bar, env: production}
-
message
-
For log events the message field contains the log message, optimized for viewing in a log viewer. For structured logs without an original message field, other fields can be concatenated to form a human-readable summary of the event. If multiple messages exist, they can be combined into one message.
type: text
example: Hello World
-
tags
-
List of keywords used to tag each event.
type: keyword
example: ["production", "env2"]
agent
editThe agent fields contain the data about the software entity, if any, that collects, detects, or observes events on a host, or takes measurements on a host. Examples include Beats. Agents may also run on observers. ECS agent.* fields shall be populated with details of the agent running on the host or observer where the event happened or the measurement was taken.
-
agent.ephemeral_id
-
Ephemeral identifier of this agent (if one exists). This id normally changes across restarts, but
agent.id
does not.type: keyword
example: 8a4f500f
-
agent.id
-
Unique identifier of this agent (if one exists). Example: For Beats this would be beat.id.
type: keyword
example: 8a4f500d
-
agent.name
-
Custom name of the agent. This is a name that can be given to an agent. This can be helpful if for example two Filebeat instances are running on the same host but a human readable separation is needed on which Filebeat instance data is coming from. If no name is given, the name is often left empty.
type: keyword
example: foo
-
agent.type
-
Type of the agent. The agent type stays always the same and should be given by the agent used. In case of Filebeat the agent would always be Filebeat also if two Filebeat instances are run on the same machine.
type: keyword
example: filebeat
-
agent.version
-
Version of the agent.
type: keyword
example: 6.0.0-rc2
as
editAn autonomous system (AS) is a collection of connected Internet Protocol (IP) routing prefixes under the control of one or more network operators on behalf of a single administrative entity or domain that presents a common, clearly defined routing policy to the internet.
-
as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
as.organization.name
-
Organization name.
type: keyword
example: Google LLC
client
editA client is defined as the initiator of a network connection for events regarding sessions, connections, or bidirectional flow records. For TCP events, the client is the initiator of the TCP connection that sends the SYN packet(s). For other protocols, the client is generally the initiator or requestor in the network transaction. Some systems use the term "originator" to refer the client in TCP connections. The client fields describe details about the system acting as the client in the network event. Client fields are usually populated in conjunction with server fields. Client fields are generally not populated for packet-level events. Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
-
client.address
-
Some event client addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
client.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
client.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
client.bytes
-
Bytes sent from the client to the server.
type: long
example: 184
format: bytes
-
client.domain
-
Client domain.
type: keyword
-
client.geo.city_name
-
City name.
type: keyword
example: Montreal
-
client.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
client.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
client.geo.country_name
-
Country name.
type: keyword
example: Canada
-
client.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
client.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
client.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
client.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
client.ip
-
IP address of the client. Can be one or multiple IPv4 or IPv6 addresses.
type: ip
-
client.mac
-
MAC address of the client.
type: keyword
-
client.nat.ip
-
Translated IP of source based NAT sessions (e.g. internal client to internet). Typically connections traversing load balancers, firewalls, or routers.
type: ip
-
client.nat.port
-
Translated port of source based NAT sessions (e.g. internal client to internet). Typically connections traversing load balancers, firewalls, or routers.
type: long
format: string
-
client.packets
-
Packets sent from the client to the server.
type: long
example: 12
-
client.port
-
Port of the client.
type: long
format: string
-
client.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
client.user.email
-
User email address.
type: keyword
-
client.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
client.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
client.user.group.name
-
Name of the group.
type: keyword
-
client.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
client.user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
client.user.name
-
Short name or login of the user.
type: keyword
example: albert
cloud
editFields related to the cloud or infrastructure the events are coming from.
-
cloud.account.id
-
The cloud account or organization id used to identify different entities in a multi-tenant environment. Examples: AWS account id, Google Cloud ORG Id, or other unique identifier.
type: keyword
example: 666777888999
-
cloud.availability_zone
-
Availability zone in which this host is running.
type: keyword
example: us-east-1c
-
cloud.instance.id
-
Instance ID of the host machine.
type: keyword
example: i-1234567890abcdef0
-
cloud.instance.name
-
Instance name of the host machine.
type: keyword
-
cloud.machine.type
-
Machine type of the host machine.
type: keyword
example: t2.medium
-
cloud.provider
-
Name of the cloud provider. Example values are aws, azure, gcp, or digitalocean.
type: keyword
example: aws
-
cloud.region
-
Region in which this host is running.
type: keyword
example: us-east-1
container
editContainer fields are used for meta information about the specific container that is the source of information. These fields help correlate data based containers from any runtime.
-
container.id
-
Unique container id.
type: keyword
-
container.image.name
-
Name of the image the container was built on.
type: keyword
-
container.image.tag
-
Container image tag.
type: keyword
-
container.labels
-
Image labels.
type: object
-
container.name
-
Container name.
type: keyword
-
container.runtime
-
Runtime managing this container.
type: keyword
example: docker
destination
editDestination fields describe details about the destination of a packet/event. Destination fields are usually populated in conjunction with source fields.
-
destination.address
-
Some event destination addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
destination.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
destination.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
destination.bytes
-
Bytes sent from the destination to the source.
type: long
example: 184
format: bytes
-
destination.domain
-
Destination domain.
type: keyword
-
destination.geo.city_name
-
City name.
type: keyword
example: Montreal
-
destination.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
destination.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
destination.geo.country_name
-
Country name.
type: keyword
example: Canada
-
destination.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
destination.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
destination.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
destination.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
destination.ip
-
IP address of the destination. Can be one or multiple IPv4 or IPv6 addresses.
type: ip
-
destination.mac
-
MAC address of the destination.
type: keyword
-
destination.nat.ip
-
Translated ip of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: ip
-
destination.nat.port
-
Port the source session is translated to by NAT Device. Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
destination.packets
-
Packets sent from the destination to the source.
type: long
example: 12
-
destination.port
-
Port of the destination.
type: long
format: string
-
destination.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
destination.user.email
-
User email address.
type: keyword
-
destination.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
destination.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
destination.user.group.name
-
Name of the group.
type: keyword
-
destination.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
destination.user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
destination.user.name
-
Short name or login of the user.
type: keyword
example: albert
dns
editFields describing DNS queries and answers.
DNS events should either represent a single DNS query prior to getting answers (dns.type:query
) or they should represent a full exchange and contain the query details as well as all of the answers that were provided for this query (dns.type:answer
).
-
dns.answers
-
An array containing an object for each answer section returned by the server. The main keys that should be present in these objects are defined by ECS. Records that have more information may contain more keys than what ECS defines. Not all DNS data sources give all details about DNS answers. At minimum, answer objects must contain the
data
key. If more information is available, map as much of it to ECS as possible, and add any additional fields to the answer objects as custom fields.type: object
-
dns.answers.class
-
The class of DNS data contained in this resource record.
type: keyword
example: IN
-
dns.answers.data
-
The data describing the resource. The meaning of this data depends on the type and class of the resource record.
type: keyword
example: 10.10.10.10
-
dns.answers.name
-
The domain name to which this resource record pertains. If a chain of CNAME is being resolved, each answer’s
name
should be the one that corresponds with the answer’sdata
. It should not simply be the originalquestion.name
repeated.type: keyword
example: www.google.com
-
dns.answers.ttl
-
The time interval in seconds that this resource record may be cached before it should be discarded. Zero values mean that the data should not be cached.
type: long
example: 180
-
dns.answers.type
-
The type of data contained in this resource record.
type: keyword
example: CNAME
-
dns.header_flags
-
Array of 2 letter DNS header flags. Expected values are: AA, TC, RD, RA, AD, CD, DO.
type: keyword
example: [RD, RA]
-
dns.id
-
The DNS packet identifier assigned by the program that generated the query. The identifier is copied to the response.
type: keyword
example: 62111
-
dns.op_code
-
The DNS operation code that specifies the kind of query in the message. This value is set by the originator of a query and copied into the response.
type: keyword
example: QUERY
-
dns.question.class
-
The class of of records being queried.
type: keyword
example: IN
-
dns.question.name
-
The name being queried. If the name field contains non-printable characters (below 32 or above 126), those characters should be represented as escaped base 10 integers (\DDD). Back slashes and quotes should be escaped. Tabs, carriage returns, and line feeds should be converted to \t, \r, and \n respectively.
type: keyword
example: www.google.com
-
dns.question.registered_domain
-
The highest registered domain, stripped of the subdomain. For example, the registered domain for "foo.google.com" is "google.com". This value can be determined precisely with a list like the public suffix list (http://publicsuffix.org). Trying to approximate this by simply taking the last two labels will not work well for TLDs such as "co.uk".
type: keyword
example: google.com
-
dns.question.type
-
The type of record being queried.
type: keyword
example: AAAA
-
dns.resolved_ip
-
Array containing all IPs seen in
answers.data
. Theanswers
array can be difficult to use, because of the variety of data formats it can contain. Extracting all IP addresses seen in there todns.resolved_ip
makes it possible to index them as IP addresses, and makes them easier to visualize and query for.type: ip
example: [10.10.10.10, 10.10.10.11]
-
dns.response_code
-
The DNS response code.
type: keyword
example: NOERROR
-
dns.type
-
The type of DNS event captured, query or answer. If your source of DNS events only gives you DNS queries, you should only create dns events of type
dns.type:query
. If your source of DNS events gives you answers as well, you should create one event per query (optionally as soon as the query is seen). And a second event containing all query details as well as an array of answers.type: keyword
example: answer
ecs
editMeta-information specific to ECS.
-
ecs.version
-
ECS version this event conforms to.
ecs.version
is a required field and must exist in all events. When querying across multiple indices — which may conform to slightly different ECS versions — this field lets integrations adjust to the schema version of the events.type: keyword
example: 1.0.0
required: True
error
editThese fields can represent errors of any kind. Use them for errors that happen while fetching events or in cases where the event itself contains an error.
-
error.code
-
Error code describing the error.
type: keyword
-
error.id
-
Unique identifier for the error.
type: keyword
-
error.message
-
Error message.
type: text
event
editThe event fields are used for context information about the log or metric event itself. A log is defined as an event containing details of something that happened. Log events must include the time at which the thing happened. Examples of log events include a process starting on a host, a network packet being sent from a source to a destination, or a network connection between a client and a server being initiated or closed. A metric is defined as an event containing one or more numerical or categorical measurements and the time at which the measurement was taken. Examples of metric events include memory pressure measured on a host, or vulnerabilities measured on a scanned host.
-
event.action
-
The action captured by the event. This describes the information in the event. It is more specific than
event.category
. Examples aregroup-add
,process-started
,file-created
. The value is normally defined by the implementer.type: keyword
example: user-password-change
-
event.category
-
Event category. This contains high-level information about the contents of the event. It is more generic than
event.action
, in the sense that typically a category contains multiple actions. Warning: In future versions of ECS, we plan to provide a list of acceptable values for this field, please use with caution.type: keyword
example: user-management
-
event.code
-
Identification code for this event, if one exists. Some event sources use event codes to identify messages unambiguously, regardless of message language or wording adjustments over time. An example of this is the Windows Event ID.
type: keyword
example: 4648
-
event.created
-
event.created contains the date/time when the event was first read by an agent, or by your pipeline. This field is distinct from @timestamp in that @timestamp typically contain the time extracted from the original event. In most situations, these two timestamps will be slightly different. The difference can be used to calculate the delay between your source generating an event, and the time when your agent first processed it. This can be used to monitor your agent’s or pipeline’s ability to keep up with your event source. In case the two timestamps are identical, @timestamp should be used.
type: date
-
event.dataset
-
Name of the dataset. If an event source publishes more than one type of log or events (e.g. access log, error log), the dataset is used to specify which one the event comes from. It’s recommended but not required to start the dataset name with the module name, followed by a dot, then the dataset name.
type: keyword
example: apache.access
-
event.duration
-
Duration of the event in nanoseconds. If event.start and event.end are known this value should be the difference between the end and start time.
type: long
format: duration
-
event.end
-
event.end contains the date when the event ended or when the activity was last observed.
type: date
-
event.hash
-
Hash (perhaps logstash fingerprint) of raw field to be able to demonstrate log integrity.
type: keyword
example: 123456789012345678901234567890ABCD
-
event.id
-
Unique ID to describe the event.
type: keyword
example: 8a4f500d
-
event.kind
-
The kind of the event. This gives information about what type of information the event contains, without being specific to the contents of the event. Examples are
event
,state
,alarm
. Warning: In future versions of ECS, we plan to provide a list of acceptable values for this field, please use with caution.type: keyword
example: state
-
event.module
-
Name of the module this data is coming from. If your monitoring agent supports the concept of modules or plugins to process events of a given source (e.g. Apache logs),
event.module
should contain the name of this module.type: keyword
example: apache
-
event.original
-
Raw text message of entire event. Used to demonstrate log integrity. This field is not indexed and doc_values are disabled. It cannot be searched, but it can be retrieved from
_source
.type: keyword
example: Sep 19 08:26:10 host CEF:0|Security| threatmanager|1.0|100| worm successfully stopped|10|src=10.0.0.1 dst=2.1.2.2spt=1232
-
event.outcome
-
The outcome of the event. If the event describes an action, this fields contains the outcome of that action. Examples outcomes are
success
andfailure
. Warning: In future versions of ECS, we plan to provide a list of acceptable values for this field, please use with caution.type: keyword
example: success
-
event.provider
-
Source of the event. Event transports such as Syslog or the Windows Event Log typically mention the source of an event. It can be the name of the software that generated the event (e.g. Sysmon, httpd), or of a subsystem of the operating system (kernel, Microsoft-Windows-Security-Auditing).
type: keyword
example: kernel
-
event.risk_score
-
Risk score or priority of the event (e.g. security solutions). Use your system’s original value here.
type: float
-
event.risk_score_norm
-
Normalized risk score or priority of the event, on a scale of 0 to 100. This is mainly useful if you use more than one system that assigns risk scores, and you want to see a normalized value across all systems.
type: float
-
event.sequence
-
Sequence number of the event. The sequence number is a value published by some event sources, to make the exact ordering of events unambiguous, regarless of the timestamp precision.
type: long
format: string
-
event.severity
-
Severity describes the original severity of the event. What the different severity values mean can very different between use cases. It’s up to the implementer to make sure severities are consistent across events.
type: long
example: 7
format: string
-
event.start
-
event.start contains the date when the event started or when the activity was first observed.
type: date
-
event.timezone
-
This field should be populated when the event’s timestamp does not include timezone information already (e.g. default Syslog timestamps). It’s optional otherwise. Acceptable timezone formats are: a canonical ID (e.g. "Europe/Amsterdam"), abbreviated (e.g. "EST") or an HH:mm differential (e.g. "-05:00").
type: keyword
-
event.type
-
Reserved for future usage. Please avoid using this field for user data.
type: keyword
file
editA file is defined as a set of information that has been created on, or has existed on a filesystem. File objects can be associated with host events, network events, and/or file events (e.g., those produced by File Integrity Monitoring [FIM] products or services). File fields provide details about the affected file associated with the event or metric.
-
file.accessed
-
Last time the file was accessed. Note that not all filesystems keep track of access time.
type: date
-
file.created
-
File creation time. Note that not all filesystems store the creation time.
type: date
-
file.ctime
-
Last time the file attributes or metadata changed. Note that changes to the file content will update
mtime
. This impliesctime
will be adjusted at the same time, sincemtime
is an attribute of the file.type: date
-
file.device
-
Device that is the source of the file.
type: keyword
example: sda
-
file.directory
-
Directory where the file is located.
type: keyword
example: /home/alice
-
file.extension
-
File extension.
type: keyword
example: png
-
file.gid
-
Primary group ID (GID) of the file.
type: keyword
example: 1001
-
file.group
-
Primary group name of the file.
type: keyword
example: alice
-
file.hash.md5
-
MD5 hash.
type: keyword
-
file.hash.sha1
-
SHA1 hash.
type: keyword
-
file.hash.sha256
-
SHA256 hash.
type: keyword
-
file.hash.sha512
-
SHA512 hash.
type: keyword
-
file.inode
-
Inode representing the file in the filesystem.
type: keyword
example: 256383
-
file.mode
-
Mode of the file in octal representation.
type: keyword
example: 0640
-
file.mtime
-
Last time the file content was modified.
type: date
-
file.name
-
Name of the file including the extension, without the directory.
type: keyword
example: example.png
-
file.owner
-
File owner’s username.
type: keyword
example: alice
-
file.path
-
Full path to the file.
type: keyword
example: /home/alice/example.png
-
file.size
-
File size in bytes. Only relevant when
file.type
is "file".type: long
example: 16384
-
file.target_path
-
Target path for symlinks.
type: keyword
-
file.type
-
File type (file, dir, or symlink).
type: keyword
example: file
-
file.uid
-
The user ID (UID) or security identifier (SID) of the file owner.
type: keyword
example: 1001
geo
editGeo fields can carry data about a specific location related to an event. This geolocation information can be derived from techniques such as Geo IP, or be user-supplied.
-
geo.city_name
-
City name.
type: keyword
example: Montreal
-
geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
geo.country_name
-
Country name.
type: keyword
example: Canada
-
geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
geo.region_name
-
Region name.
type: keyword
example: Quebec
group
editThe group fields are meant to represent groups that are relevant to the event.
-
group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
group.name
-
Name of the group.
type: keyword
hash
editThe hash fields represent different hash algorithms and their values. Field names for common hashes (e.g. MD5, SHA1) are predefined. Add fields for other hashes by lowercasing the hash algorithm name and using underscore separators as appropriate (snake case, e.g. sha3_512).
-
hash.md5
-
MD5 hash.
type: keyword
-
hash.sha1
-
SHA1 hash.
type: keyword
-
hash.sha256
-
SHA256 hash.
type: keyword
-
hash.sha512
-
SHA512 hash.
type: keyword
host
editA host is defined as a general computing instance. ECS host.* fields should be populated with details about the host on which the event happened, or from which the measurement was taken. Host types include hardware, virtual machines, Docker containers, and Kubernetes nodes.
-
host.architecture
-
Operating system architecture.
type: keyword
example: x86_64
-
host.geo.city_name
-
City name.
type: keyword
example: Montreal
-
host.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
host.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
host.geo.country_name
-
Country name.
type: keyword
example: Canada
-
host.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
host.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
host.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
host.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
host.hostname
-
Hostname of the host. It normally contains what the
hostname
command returns on the host machine.type: keyword
-
host.id
-
Unique host id. As hostname is not always unique, use values that are meaningful in your environment. Example: The current usage of
beat.name
.type: keyword
-
host.ip
-
Host ip address.
type: ip
-
host.mac
-
Host mac address.
type: keyword
-
host.name
-
Name of the host. It can contain what
hostname
returns on Unix systems, the fully qualified domain name, or a name specified by the user. The sender decides which value to use.type: keyword
-
host.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
host.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
host.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
host.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
host.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
host.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
host.type
-
Type of host. For Cloud providers this can be the machine type like
t2.medium
. If vm, this could be the container, for example, or other information meaningful in your environment.type: keyword
-
host.uptime
-
Seconds the host has been up.
type: long
example: 1325
-
host.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
host.user.email
-
User email address.
type: keyword
-
host.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
host.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
host.user.group.name
-
Name of the group.
type: keyword
-
host.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
host.user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
host.user.name
-
Short name or login of the user.
type: keyword
example: albert
http
editFields related to HTTP activity. Use the url
field set to store the url of the request.
-
http.request.body.bytes
-
Size in bytes of the request body.
type: long
example: 887
format: bytes
-
http.request.body.content
-
The full HTTP request body.
type: keyword
example: Hello world
-
http.request.bytes
-
Total size in bytes of the request (body and headers).
type: long
example: 1437
format: bytes
-
http.request.method
-
HTTP request method. The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: get, post, put
-
http.request.referrer
-
Referrer for this HTTP request.
type: keyword
example: https://blog.example.com/
-
http.response.body.bytes
-
Size in bytes of the response body.
type: long
example: 887
format: bytes
-
http.response.body.content
-
The full HTTP response body.
type: keyword
example: Hello world
-
http.response.bytes
-
Total size in bytes of the response (body and headers).
type: long
example: 1437
format: bytes
-
http.response.status_code
-
HTTP response status code.
type: long
example: 404
format: string
-
http.version
-
HTTP version.
type: keyword
example: 1.1
log
editFields which are specific to log events.
-
log.level
-
Original log level of the log event. Some examples are
warn
,error
,i
.type: keyword
example: err
-
log.logger
-
The name of the logger inside an application. This is usually the name of the class which initialized the logger, or can be a custom name.
type: keyword
example: org.elasticsearch.bootstrap.Bootstrap
-
log.original
-
This is the original log message and contains the full log message before splitting it up in multiple parts. In contrast to the
message
field which can contain an extracted part of the log message, this field contains the original, full log message. It can have already some modifications applied like encoding or new lines removed to clean up the log message. This field is not indexed and doc_values are disabled so it can’t be queried but the value can be retrieved from_source
.type: keyword
example: Sep 19 08:26:10 localhost My log
network
editThe network is defined as the communication path over which a host or network event happens. The network.* fields should be populated with details about the network activity associated with an event.
-
network.application
-
A name given to an application level protocol. This can be arbitrarily assigned for things like microservices, but also apply to things like skype, icq, facebook, twitter. This would be used in situations where the vendor or service can be decoded such as from the source/dest IP owners, ports, or wire format. The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: aim
-
network.bytes
-
Total bytes transferred in both directions. If
source.bytes
anddestination.bytes
are known,network.bytes
is their sum.type: long
example: 368
format: bytes
-
network.community_id
-
A hash of source and destination IPs and ports, as well as the protocol used in a communication. This is a tool-agnostic standard to identify flows. Learn more at https://github.com/corelight/community-id-spec.
type: keyword
example: 1:hO+sN4H+MG5MY/8hIrXPqc4ZQz0=
-
network.direction
-
Direction of the network traffic. Recommended values are: * inbound * outbound * internal * external * unknown
When mapping events from a host-based monitoring context, populate this field from the host’s point of view. When mapping events from a network or perimeter-based monitoring context, populate this field from the point of view of your network perimeter.
type: keyword
example: inbound
-
network.forwarded_ip
-
Host IP address when the source IP address is the proxy.
type: ip
example: 192.1.1.2
-
network.iana_number
-
IANA Protocol Number (https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml). Standardized list of protocols. This aligns well with NetFlow and sFlow related logs which use the IANA Protocol Number.
type: keyword
example: 6
-
network.name
-
Name given by operators to sections of their network.
type: keyword
example: Guest Wifi
-
network.packets
-
Total packets transferred in both directions. If
source.packets
anddestination.packets
are known,network.packets
is their sum.type: long
example: 24
-
network.protocol
-
L7 Network protocol name. ex. http, lumberjack, transport protocol. The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: http
-
network.transport
-
Same as network.iana_number, but instead using the Keyword name of the transport layer (udp, tcp, ipv6-icmp, etc.) The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: tcp
-
network.type
-
In the OSI Model this would be the Network Layer. ipv4, ipv6, ipsec, pim, etc The field value must be normalized to lowercase for querying. See the documentation section "Implementing ECS".
type: keyword
example: ipv4
observer
editAn observer is defined as a special network, security, or application device used to detect, observe, or create network, security, or application-related events and metrics. This could be a custom hardware appliance or a server that has been configured to run special network, security, or application software. Examples include firewalls, intrusion detection/prevention systems, network monitoring sensors, web application firewalls, data loss prevention systems, and APM servers. The observer.* fields shall be populated with details of the system, if any, that detects, observes and/or creates a network, security, or application event or metric. Message queues and ETL components used in processing events or metrics are not considered observers in ECS.
-
observer.geo.city_name
-
City name.
type: keyword
example: Montreal
-
observer.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
observer.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
observer.geo.country_name
-
Country name.
type: keyword
example: Canada
-
observer.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
observer.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
observer.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
observer.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
observer.hostname
-
Hostname of the observer.
type: keyword
-
observer.ip
-
IP address of the observer.
type: ip
-
observer.mac
-
MAC address of the observer
type: keyword
-
observer.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
observer.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
observer.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
observer.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
observer.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
observer.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
observer.serial_number
-
Observer serial number.
type: keyword
-
observer.type
-
The type of the observer the data is coming from. There is no predefined list of observer types. Some examples are
forwarder
,firewall
,ids
,ips
,proxy
,poller
,sensor
,APM server
.type: keyword
example: firewall
-
observer.vendor
-
observer vendor information.
type: keyword
-
observer.version
-
Observer version.
type: keyword
organization
editThe organization fields enrich data with information about the company or entity the data is associated with. These fields help you arrange or filter data stored in an index by one or multiple organizations.
-
organization.id
-
Unique identifier for the organization.
type: keyword
-
organization.name
-
Organization name.
type: keyword
os
editThe OS fields contain information about the operating system.
-
os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
process
editThese fields contain information about a process.
These fields can help you correlate metrics information with a process id/name from a log message. The process.pid
often stays in the metric itself and is copied to the global field for correlation.
-
process.args
-
Array of process arguments. May be filtered to protect sensitive information.
type: keyword
example: [ssh, -l, user, 10.0.0.16]
-
process.executable
-
Absolute path to the process executable.
type: keyword
example: /usr/bin/ssh
-
process.hash.md5
-
MD5 hash.
type: keyword
-
process.hash.sha1
-
SHA1 hash.
type: keyword
-
process.hash.sha256
-
SHA256 hash.
type: keyword
-
process.hash.sha512
-
SHA512 hash.
type: keyword
-
process.name
-
Process name. Sometimes called program name or similar.
type: keyword
example: ssh
-
process.pgid
-
Identifier of the group of processes the process belongs to.
type: long
format: string
-
process.pid
-
Process id.
type: long
example: 4242
format: string
-
process.ppid
-
Parent process' pid.
type: long
example: 4241
format: string
-
process.start
-
The time the process started.
type: date
example: 2016-05-23T08:05:34.853Z
-
process.thread.id
-
Thread ID.
type: long
example: 4242
format: string
-
process.thread.name
-
Thread name.
type: keyword
example: thread-0
-
process.title
-
Process title. The proctitle, some times the same as process name. Can also be different: for example a browser setting its title to the web page currently opened.
type: keyword
-
process.uptime
-
Seconds the process has been up.
type: long
example: 1325
-
process.working_directory
-
The working directory of the process.
type: keyword
example: /home/alice
related
editThis field set is meant to facilitate pivoting around a piece of data.
Some pieces of information can be seen in many places in an ECS event. To facilitate searching for them, store an array of all seen values to their corresponding field in related.
.
A concrete example is IP addresses, which can be under host, observer, source, destination, client, server, and network.forwarded_ip. If you append all IPs to related.ip
, you can then search for a given IP trivially, no matter where it appeared, by querying related.ip:a.b.c.d
.
-
related.ip
-
All of the IPs seen on your event.
type: ip
server
editA Server is defined as the responder in a network connection for events regarding sessions, connections, or bidirectional flow records. For TCP events, the server is the receiver of the initial SYN packet(s) of the TCP connection. For other protocols, the server is generally the responder in the network transaction. Some systems actually use the term "responder" to refer the server in TCP connections. The server fields describe details about the system acting as the server in the network event. Server fields are usually populated in conjunction with client fields. Server fields are generally not populated for packet-level events. Client / server representations can add semantic context to an exchange, which is helpful to visualize the data in certain situations. If your context falls in that category, you should still ensure that source and destination are filled appropriately.
-
server.address
-
Some event server addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
server.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
server.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
server.bytes
-
Bytes sent from the server to the client.
type: long
example: 184
format: bytes
-
server.domain
-
Server domain.
type: keyword
-
server.geo.city_name
-
City name.
type: keyword
example: Montreal
-
server.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
server.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
server.geo.country_name
-
Country name.
type: keyword
example: Canada
-
server.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
server.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
server.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
server.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
server.ip
-
IP address of the server. Can be one or multiple IPv4 or IPv6 addresses.
type: ip
-
server.mac
-
MAC address of the server.
type: keyword
-
server.nat.ip
-
Translated ip of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: ip
-
server.nat.port
-
Translated port of destination based NAT sessions (e.g. internet to private DMZ) Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
server.packets
-
Packets sent from the server to the client.
type: long
example: 12
-
server.port
-
Port of the server.
type: long
format: string
-
server.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
server.user.email
-
User email address.
type: keyword
-
server.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
server.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
server.user.group.name
-
Name of the group.
type: keyword
-
server.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
server.user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
server.user.name
-
Short name or login of the user.
type: keyword
example: albert
service
editThe service fields describe the service for or from which the data was collected. These fields help you find and correlate logs for a specific service and version.
-
service.ephemeral_id
-
Ephemeral identifier of this service (if one exists). This id normally changes across restarts, but
service.id
does not.type: keyword
example: 8a4f500f
-
service.id
-
Unique identifier of the running service. If the service is comprised of many nodes, the
service.id
should be the same for all nodes. This id should uniquely identify the service. This makes it possible to correlate logs and metrics for one specific service, no matter which particular node emitted the event. Note that if you need to see the events from one specific host of the service, you should filter on thathost.name
orhost.id
instead.type: keyword
example: d37e5ebfe0ae6c4972dbe9f0174a1637bb8247f6
-
service.name
-
Name of the service data is collected from. The name of the service is normally user given. This allows if two instances of the same service are running on the same machine they can be differentiated by the
service.name
. Also it allows for distributed services that run on multiple hosts to correlate the related instances based on the name. In the case of Elasticsearch the service.name could contain the cluster name. For Beats the service.name is by default a copy of theservice.type
field if no name is specified.type: keyword
example: elasticsearch-metrics
-
service.state
-
Current state of the service.
type: keyword
-
service.type
-
The type of the service data is collected from. The type can be used to group and correlate logs and metrics from one service type. Example: If logs or metrics are collected from Elasticsearch,
service.type
would beelasticsearch
.type: keyword
example: elasticsearch
-
service.version
-
Version of the service the data was collected from. This allows to look at a data set only for a specific version of a service.
type: keyword
example: 3.2.4
source
editSource fields describe details about the source of a packet/event. Source fields are usually populated in conjunction with destination fields.
-
source.address
-
Some event source addresses are defined ambiguously. The event will sometimes list an IP, a domain or a unix socket. You should always store the raw address in the
.address
field. Then it should be duplicated to.ip
or.domain
, depending on which one it is.type: keyword
-
source.as.number
-
Unique number allocated to the autonomous system. The autonomous system number (ASN) uniquely identifies each network on the Internet.
type: long
example: 15169
-
source.as.organization.name
-
Organization name.
type: keyword
example: Google LLC
-
source.bytes
-
Bytes sent from the source to the destination.
type: long
example: 184
format: bytes
-
source.domain
-
Source domain.
type: keyword
-
source.geo.city_name
-
City name.
type: keyword
example: Montreal
-
source.geo.continent_name
-
Name of the continent.
type: keyword
example: North America
-
source.geo.country_iso_code
-
Country ISO code.
type: keyword
example: CA
-
source.geo.country_name
-
Country name.
type: keyword
example: Canada
-
source.geo.location
-
Longitude and latitude.
type: geo_point
example: { "lon": -73.614830, "lat": 45.505918 }
-
source.geo.name
-
User-defined description of a location, at the level of granularity they care about. Could be the name of their data centers, the floor number, if this describes a local physical entity, city names. Not typically used in automated geolocation.
type: keyword
example: boston-dc
-
source.geo.region_iso_code
-
Region ISO code.
type: keyword
example: CA-QC
-
source.geo.region_name
-
Region name.
type: keyword
example: Quebec
-
source.ip
-
IP address of the source. Can be one or multiple IPv4 or IPv6 addresses.
type: ip
-
source.mac
-
MAC address of the source.
type: keyword
-
source.nat.ip
-
Translated ip of source based NAT sessions (e.g. internal client to internet) Typically connections traversing load balancers, firewalls, or routers.
type: ip
-
source.nat.port
-
Translated port of source based NAT sessions. (e.g. internal client to internet) Typically used with load balancers, firewalls, or routers.
type: long
format: string
-
source.packets
-
Packets sent from the source to the destination.
type: long
example: 12
-
source.port
-
Port of the source.
type: long
format: string
-
source.user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
source.user.email
-
User email address.
type: keyword
-
source.user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
source.user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
source.user.group.name
-
Name of the group.
type: keyword
-
source.user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
source.user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
source.user.name
-
Short name or login of the user.
type: keyword
example: albert
tracing
editDistributed tracing makes it possible to analyze performance throughout a microservice architecture all in one view. This is accomplished by tracing all of the requests - from the initial web request in the front-end service - to queries made through multiple back-end services.
-
tracing.trace.id
-
Unique identifier of the trace. A trace groups multiple events like transactions that belong together. For example, a user request handled by multiple inter-connected services.
type: keyword
example: 4bf92f3577b34da6a3ce929d0e0e4736
-
tracing.transaction.id
-
Unique identifier of the transaction. A transaction is the highest level of work measured within a service, such as a request to a server.
type: keyword
example: 00f067aa0ba902b7
url
editURL fields provide support for complete or partial URLs, and supports the breaking down into scheme, domain, path, and so on.
-
url.domain
-
Domain of the url, such as "www.elastic.co". In some cases a URL may refer to an IP and/or port directly, without a domain name. In this case, the IP address would go to the
domain
field.type: keyword
example: www.elastic.co
-
url.fragment
-
Portion of the url after the
#
, such as "top". The#
is not part of the fragment.type: keyword
-
url.full
-
If full URLs are important to your use case, they should be stored in
url.full
, whether this field is reconstructed or present in the event source.type: keyword
example: https://www.elastic.co:443/search?q=elasticsearch#top
-
url.original
-
Unmodified original url as seen in the event source. Note that in network monitoring, the observed URL may be a full URL, whereas in access logs, the URL is often just represented as a path. This field is meant to represent the URL as it was observed, complete or not.
type: keyword
example: https://www.elastic.co:443/search?q=elasticsearch#top or /search?q=elasticsearch
-
url.password
-
Password of the request.
type: keyword
-
url.path
-
Path of the request, such as "/search".
type: keyword
-
url.port
-
Port of the request, such as 443.
type: long
example: 443
format: string
-
url.query
-
The query field describes the query string of the request, such as "q=elasticsearch". The
?
is excluded from the query string. If a URL contains no?
, there is no query field. If there is a?
but no query, the query field exists with an empty string. Theexists
query can be used to differentiate between the two cases.type: keyword
-
url.scheme
-
Scheme of the request, such as "https". Note: The
:
is not part of the scheme.type: keyword
example: https
-
url.username
-
Username of the request.
type: keyword
user
editThe user fields describe information about the user that is relevant to the event. Fields can have one entry or multiple entries. If a user has more than one id, provide an array that includes all of them.
-
user.domain
-
Name of the directory the user is a member of. For example, an LDAP or Active Directory domain name.
type: keyword
-
user.email
-
User email address.
type: keyword
-
user.full_name
-
User’s full name, if available.
type: keyword
example: Albert Einstein
-
user.group.id
-
Unique identifier for the group on the system/platform.
type: keyword
-
user.group.name
-
Name of the group.
type: keyword
-
user.hash
-
Unique user hash to correlate information for a user in anonymized form. Useful if
user.id
oruser.name
contain confidential information and cannot be used.type: keyword
-
user.id
-
One or multiple unique identifiers of the user.
type: keyword
-
user.name
-
Short name or login of the user.
type: keyword
example: albert
user_agent
editThe user_agent fields normally come from a browser request. They often show up in web service logs coming from the parsed user agent string.
-
user_agent.device.name
-
Name of the device.
type: keyword
example: iPhone
-
user_agent.name
-
Name of the user agent.
type: keyword
example: Safari
-
user_agent.original
-
Unparsed version of the user_agent.
type: keyword
example: Mozilla/5.0 (iPhone; CPU iPhone OS 12_1 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.0 Mobile/15E148 Safari/604.1
-
user_agent.os.family
-
OS family (such as redhat, debian, freebsd, windows).
type: keyword
example: debian
-
user_agent.os.full
-
Operating system name, including the version or code name.
type: keyword
example: Mac OS Mojave
-
user_agent.os.kernel
-
Operating system kernel version as a raw string.
type: keyword
example: 4.4.0-112-generic
-
user_agent.os.name
-
Operating system name, without the version.
type: keyword
example: Mac OS X
-
user_agent.os.platform
-
Operating system platform (such centos, ubuntu, windows).
type: keyword
example: darwin
-
user_agent.os.version
-
Operating system version as a raw string.
type: keyword
example: 10.14.1
-
user_agent.version
-
Version of the user agent.
type: keyword
example: 12.0
On this page