Add Kubernetes metadata
editAdd Kubernetes metadata
editThe add_kubernetes_metadata
processor annotates each event with relevant
metadata based on which Kubernetes pod the event originated from. This processor only adds metadata to the events that do not have it yet present.
At startup, it detects an in_cluster
environment and caches the
Kubernetes-related metadata. Events are only annotated if a valid configuration
is detected. If it’s not able to detect a valid Kubernetes configuration,
the events are not annotated with Kubernetes-related metadata.
Each event is annotated with:
- Pod Name
- Pod UID
- Namespace
- Labels
In addition, the node and namespace metadata are added to the pod metadata.
The add_kubernetes_metadata
processor has two basic building blocks:
- Indexers
- Matchers
Indexers use pod metadata to create unique identifiers for each one of the
pods. These identifiers help to correlate the metadata of the observed pods with
actual events. For example, the ip_port
indexer can take a Kubernetes pod and
create identifiers for it based on all its pod_ip:container_port
combinations.
Matchers use information in events to construct lookup keys that match the
identifiers created by the indexers. For example, when the fields
matcher takes
["metricset.host"]
as a lookup field, it would construct a lookup key with the
value of the field metricset.host
. When one of these lookup keys matches with one
of the identifiers, the event is enriched with the metadata of the identified
pod.
Each Beat can define its own default indexers and matchers which are enabled by
default. For example, Filebeat enables the container
indexer, which identifies
pod metadata based on all container IDs, and a logs_path
matcher, which takes
the log.file.path
field, extracts the container ID, and uses it to retrieve
metadata.
You can find more information about the available indexers and matchers, and some examples in Indexers and matchers.
The configuration below enables the processor when auditbeat is run as a pod in Kubernetes.
processors: - add_kubernetes_metadata: # Defining indexers and matchers manually is required for auditbeat, for instance: #indexers: # - ip_port: #matchers: # - fields: # lookup_fields: ["metricset.host"] #labels.dedot: true #annotations.dedot: true
The configuration below enables the processor on a Beat running as a process on the Kubernetes node.
processors: - add_kubernetes_metadata: host: <hostname> # If kube_config is not set, KUBECONFIG environment variable will be checked # and if not present it will fall back to InCluster kube_config: $Auditbeat Reference [8.x]/.kube/config # Defining indexers and matchers manually is required for auditbeat, for instance: #indexers: # - ip_port: #matchers: # - fields: # lookup_fields: ["metricset.host"] #labels.dedot: true #annotations.dedot: true
The configuration below has the default indexers and matchers disabled and enables ones that the user is interested in.
processors: - add_kubernetes_metadata: host: <hostname> # If kube_config is not set, KUBECONFIG environment variable will be checked # and if not present it will fall back to InCluster kube_config: ~/.kube/config default_indexers.enabled: false default_matchers.enabled: false indexers: - ip_port: matchers: - fields: lookup_fields: ["metricset.host"] #labels.dedot: true #annotations.dedot: true
The add_kubernetes_metadata
processor has the following configuration settings:
-
host
- (Optional) Specify the node to scope auditbeat to in case it cannot be accurately detected, as when running auditbeat in host network mode.
-
scope
-
(Optional) Specify if the processor should have visibility at the node level or at the entire cluster
level. Possible values are
node
andcluster
. Scope isnode
by default. -
namespace
- (Optional) Select the namespace from which to collect the metadata. If it is not set, the processor collects metadata from all namespaces. It is unset by default.
-
add_resource_metadata
-
(Optional) Specify filters and configuration for the extra metadata, that will be added to the event. Configuration parameters:
-
node
ornamespace
: Specify labels and annotations filters for the extra metadata coming from node and namespace. By default all labels are included while annotations are not. To change default behaviourinclude_labels
,exclude_labels
andinclude_annotations
can be defined. Those settings are useful when storing labels and annotations that require special handling to avoid overloading the storage output. Note: wildcards are not supported for those settings. The enrichment ofnode
ornamespace
metadata can be individually disabled by settingenabled: false
. -
deployment
: If resource ispod
and it is created from adeployment
, by default the deployment name is added, this can be disabled by settingdeployment: false
. -
cronjob
: If resource ispod
and it is created from acronjob
, by default the cronjob name is added, this can be disabled by settingcronjob: false
.Example:
-
add_resource_metadata: namespace: include_labels: ["namespacelabel1"] #labels.dedot: true #annotations.dedot: true node: include_labels: ["nodelabel2"] include_annotations: ["nodeannotation1"] #labels.dedot: true #annotations.dedot: true deployment: false cronjob: false
-
kube_config
-
(Optional) Use given config file as configuration for Kubernetes
client. It defaults to
KUBECONFIG
environment variable if present. -
use_kubeadm
- (Optional) Default true. By default requests to kubeadm config map are made in order to enrich cluster name by requesting /api/v1/namespaces/kube-system/configmaps/kubeadm-config API endpoint.
-
kube_client_options
- (Optional) Additional options can be configured for Kubernetes client. Currently client QPS and burst are supported, if not set Kubernetes client’s default QPS and burst will be used. Example:
kube_client_options: qps: 5 burst: 10
-
cleanup_timeout
-
(Optional) Specify the time of inactivity before stopping the
running configuration for a container. This is
60s
by default. -
sync_period
- (Optional) Specify the timeout for listing historical resources.
-
default_indexers.enabled
- (Optional) Enable or disable default pod indexers when you want to specify your own.
-
default_matchers.enabled
- (Optional) Enable or disable default pod matchers when you want to specify your own.
-
labels.dedot
-
(Optional) Default to be true. If set to true, then
.
in labels will be replaced with_
. -
annotations.dedot
-
(Optional) Default to be true. If set to true, then
.
in labels will be replaced with_
.
Indexers and matchers
editIndexers
editIndexers use pods metadata to create unique identifiers for each one of the pods.
Available indexers are:
-
container
- Identifies the pod metadata using the IDs of its containers.
-
ip_port
-
Identifies the pod metadata using combinations of its IP and its exposed ports.
When using this indexer metadata is identified using the IP of the pods, and the
combination if
ip:port
for each one of the ports exposed by its containers. -
pod_name
-
Identifies the pod metadata using its namespace and its name as
namespace/pod_name
. -
pod_uid
- Identifies the pod metadata using the UID of the pod.
Matchers
editMatchers are used to construct the lookup keys that match with the identifiers created by indexes.
field_format
editLooks up pod metadata using a key created with a string format that can include event fields.
This matcher has an option format
to define the string format. This string
format can contain placeholders for any field in the event.
For example, the following configuration uses the ip_port
indexer to identify
the pod metadata by combinations of the pod IP and its exposed ports, and uses
the destination IP and port in events as match keys:
processors: - add_kubernetes_metadata: ... default_indexers.enabled: false default_matchers.enabled: false indexers: - ip_port: matchers: - field_format: format: '%{[destination.ip]}:%{[destination.port]}'
fields
editLooks up pod metadata using as key the value of some specific fields. When multiple fields are defined, the first one included in the event is used.
This matcher has an option lookup_fields
to define the files whose value will
be used for lookup.
For example, the following configuration uses the ip_port
indexer to identify
pods, and defines a matcher that uses the destination IP or the server IP for the
lookup, the first it finds in the event:
processors: - add_kubernetes_metadata: ... default_indexers.enabled: false default_matchers.enabled: false indexers: - ip_port: matchers: - fields: lookup_fields: ['destination.ip', 'server.ip']
It’s also possible to extract the matching key from fields using a regex pattern.
The optional regex_pattern
field can be used to set the pattern. The pattern
must contain a capture group named key
, whose value will be used as the matching key.
For example, the following configuration uses the container
indexer to identify
containers by their id, and extracts the matching key from the cgroup id field added
to system process metrics. This field has the form cri-containerd-<id>.scope
, so
we need a regex pattern to obtain the container id.
processors: - add_kubernetes_metadata: indexers: - container: matchers: - fields: lookup_fields: ['system.process.cgroup.id'] regex_pattern: 'cri-containerd-(?P<key>[0-9a-z]+)\.scope'