Semantic query
editSemantic query
editThe semantic
query type enables you to perform semantic search on data stored in a semantic_text
field.
Example request
editresp = client.search( index="my-index-000001", query={ "semantic": { "field": "inference_field", "query": "Best surfing places" } }, ) print(resp)
const response = await client.search({ index: "my-index-000001", query: { semantic: { field: "inference_field", query: "Best surfing places", }, }, }); console.log(response);
GET my-index-000001/_search { "query": { "semantic": { "field": "inference_field", "query": "Best surfing places" } } }
Top-level parameters for semantic
edit-
field
-
(Required, string)
The
semantic_text
field to perform the query on. -
query
- (Required, string) The query text to be searched for on the field.
Refer to this tutorial to learn more about semantic search using semantic_text
and semantic
query.
Hybrid search with the semantic
query
editThe semantic
query can be used as a part of a hybrid search where the semantic
query is combined with lexical queries.
For example, the query below finds documents with the title
field matching "mountain lake", and combines them with results from a semantic search on the field title_semantic
, that is a semantic_text
field.
The combined documents are then scored, and the top 3 top scored documents are returned.
resp = client.search( index="my-index", size=3, query={ "bool": { "should": [ { "match": { "title": { "query": "mountain lake", "boost": 1 } } }, { "semantic": { "field": "title_semantic", "query": "mountain lake", "boost": 2 } } ] } }, ) print(resp)
const response = await client.search({ index: "my-index", size: 3, query: { bool: { should: [ { match: { title: { query: "mountain lake", boost: 1, }, }, }, { semantic: { field: "title_semantic", query: "mountain lake", boost: 2, }, }, ], }, }, }); console.log(response);
POST my-index/_search { "size" : 3, "query": { "bool": { "should": [ { "match": { "title": { "query": "mountain lake", "boost": 1 } } }, { "semantic": { "field": "title_semantic", "query": "mountain lake", "boost": 2 } } ] } } }
You can also use semantic_text as part of Reciprocal Rank Fusion to make ranking relevant results easier:
resp = client.search( index="my-index", retriever={ "rrf": { "retrievers": [ { "standard": { "query": { "term": { "text": "shoes" } } } }, { "standard": { "query": { "semantic": { "field": "semantic_field", "query": "shoes" } } } } ], "rank_window_size": 50, "rank_constant": 20 } }, ) print(resp)
const response = await client.search({ index: "my-index", retriever: { rrf: { retrievers: [ { standard: { query: { term: { text: "shoes", }, }, }, }, { standard: { query: { semantic: { field: "semantic_field", query: "shoes", }, }, }, }, ], rank_window_size: 50, rank_constant: 20, }, }, }); console.log(response);
GET my-index/_search { "retriever": { "rrf": { "retrievers": [ { "standard": { "query": { "term": { "text": "shoes" } } } }, { "standard": { "query": { "semantic": { "field": "semantic_field", "query": "shoes" } } } } ], "rank_window_size": 50, "rank_constant": 20 } } }