IMPORTANT: No additional bug fixes or documentation updates
will be released for this version. For the latest information, see the
current release documentation.
Update model snapshots API
editUpdate model snapshots API
editUpdates certain properties of a snapshot.
Request
editPOST _ml/anomaly_detectors/<job_id>/model_snapshots/<snapshot_id>/_update
Prerequisites
editRequires the manage_ml
cluster privilege. This privilege is included in the
machine_learning_admin
built-in role.
Path parameters
edit-
<job_id>
- (Required, string) Identifier for the anomaly detection job.
-
<snapshot_id>
- (Required, string) Identifier for the model snapshot.
Request body
editThe following properties can be updated after the model snapshot is created:
-
description
- (Optional, string) A description of the model snapshot.
-
retain
-
(Optional, Boolean)
If
true
, this snapshot will not be deleted during automatic cleanup of snapshots older thanmodel_snapshot_retention_days
. However, this snapshot will be deleted when the job is deleted. The default value isfalse
.
Examples
editresp = client.ml.update_model_snapshot( job_id="it_ops_new_logs", snapshot_id="1491852978", description="Snapshot 1", retain=True, ) print(resp)
response = client.ml.update_model_snapshot( job_id: 'it_ops_new_logs', snapshot_id: 1_491_852_978, body: { description: 'Snapshot 1', retain: true } ) puts response
const response = await client.ml.updateModelSnapshot({ job_id: "it_ops_new_logs", snapshot_id: 1491852978, description: "Snapshot 1", retain: true, }); console.log(response);
POST _ml/anomaly_detectors/it_ops_new_logs/model_snapshots/1491852978/_update { "description": "Snapshot 1", "retain": true }
When the snapshot is updated, you receive the following results:
{ "acknowledged": true, "model": { "job_id": "it_ops_new_logs", "timestamp": 1491852978000, "description": "Snapshot 1", ... "retain": true } }