Pattern analyzer
editPattern analyzer
editThe pattern
analyzer uses a regular expression to split the text into terms.
The regular expression should match the token separators not the tokens
themselves. The regular expression defaults to \W+
(or all non-word characters).
Beware of Pathological Regular Expressions
The pattern analyzer uses Java Regular Expressions.
A badly written regular expression could run very slowly or even throw a StackOverflowError and cause the node it is running on to exit suddenly.
Read more about pathological regular expressions and how to avoid them.
Example output
editresp = client.indices.analyze( analyzer="pattern", text="The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", ) print(resp)
response = client.indices.analyze( body: { analyzer: 'pattern', text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." } ) puts response
const response = await client.indices.analyze({ analyzer: "pattern", text: "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone.", }); console.log(response);
POST _analyze { "analyzer": "pattern", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog's bone." }
The above sentence would produce the following terms:
[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]
Configuration
editThe pattern
analyzer accepts the following parameters:
|
A Java regular expression, defaults to |
|
Java regular expression flags.
Flags should be pipe-separated, eg |
|
Should terms be lowercased or not. Defaults to |
|
A pre-defined stop words list like |
|
The path to a file containing stop words. |
See the Stop Token Filter for more information about stop word configuration.
Example configuration
editIn this example, we configure the pattern
analyzer to split email addresses
on non-word characters or on underscores (\W|_
), and to lower-case the result:
resp = client.indices.create( index="my-index-000001", settings={ "analysis": { "analyzer": { "my_email_analyzer": { "type": "pattern", "pattern": "\\W|_", "lowercase": True } } } }, ) print(resp) resp1 = client.indices.analyze( index="my-index-000001", analyzer="my_email_analyzer", text="[email protected]", ) print(resp1)
response = client.indices.create( index: 'my-index-000001', body: { settings: { analysis: { analyzer: { my_email_analyzer: { type: 'pattern', pattern: '\\W|_', lowercase: true } } } } } ) puts response response = client.indices.analyze( index: 'my-index-000001', body: { analyzer: 'my_email_analyzer', text: '[email protected]' } ) puts response
const response = await client.indices.create({ index: "my-index-000001", settings: { analysis: { analyzer: { my_email_analyzer: { type: "pattern", pattern: "\\W|_", lowercase: true, }, }, }, }, }); console.log(response); const response1 = await client.indices.analyze({ index: "my-index-000001", analyzer: "my_email_analyzer", text: "[email protected]", }); console.log(response1);
PUT my-index-000001 { "settings": { "analysis": { "analyzer": { "my_email_analyzer": { "type": "pattern", "pattern": "\\W|_", "lowercase": true } } } } } POST my-index-000001/_analyze { "analyzer": "my_email_analyzer", "text": "[email protected]" }
The above example produces the following terms:
[ john, smith, foo, bar, com ]
CamelCase tokenizer
editThe following more complicated example splits CamelCase text into tokens:
resp = client.indices.create( index="my-index-000001", settings={ "analysis": { "analyzer": { "camel": { "type": "pattern", "pattern": "([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])" } } } }, ) print(resp) resp1 = client.indices.analyze( index="my-index-000001", analyzer="camel", text="MooseX::FTPClass2_beta", ) print(resp1)
response = client.indices.create( index: 'my-index-000001', body: { settings: { analysis: { analyzer: { camel: { type: 'pattern', pattern: '([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])' } } } } } ) puts response response = client.indices.analyze( index: 'my-index-000001', body: { analyzer: 'camel', text: 'MooseX::FTPClass2_beta' } ) puts response
const response = await client.indices.create({ index: "my-index-000001", settings: { analysis: { analyzer: { camel: { type: "pattern", pattern: "([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])", }, }, }, }, }); console.log(response); const response1 = await client.indices.analyze({ index: "my-index-000001", analyzer: "camel", text: "MooseX::FTPClass2_beta", }); console.log(response1);
PUT my-index-000001 { "settings": { "analysis": { "analyzer": { "camel": { "type": "pattern", "pattern": "([^\\p{L}\\d]+)|(?<=\\D)(?=\\d)|(?<=\\d)(?=\\D)|(?<=[\\p{L}&&[^\\p{Lu}]])(?=\\p{Lu})|(?<=\\p{Lu})(?=\\p{Lu}[\\p{L}&&[^\\p{Lu}]])" } } } } } GET my-index-000001/_analyze { "analyzer": "camel", "text": "MooseX::FTPClass2_beta" }
The above example produces the following terms:
[ moose, x, ftp, class, 2, beta ]
The regex above is easier to understand as:
([^\p{L}\d]+) # swallow non letters and numbers, | (?<=\D)(?=\d) # or non-number followed by number, | (?<=\d)(?=\D) # or number followed by non-number, | (?<=[ \p{L} && [^\p{Lu}]]) # or lower case (?=\p{Lu}) # followed by upper case, | (?<=\p{Lu}) # or upper case (?=\p{Lu} # followed by upper case [\p{L}&&[^\p{Lu}]] # then lower case )
Definition
editThe pattern
analyzer consists of:
- Tokenizer
- Token Filters
-
- Lower Case Token Filter
- Stop Token Filter (disabled by default)
If you need to customize the pattern
analyzer beyond the configuration
parameters then you need to recreate it as a custom
analyzer and modify
it, usually by adding token filters. This would recreate the built-in
pattern
analyzer and you can use it as a starting point for further
customization:
resp = client.indices.create( index="pattern_example", settings={ "analysis": { "tokenizer": { "split_on_non_word": { "type": "pattern", "pattern": "\\W+" } }, "analyzer": { "rebuilt_pattern": { "tokenizer": "split_on_non_word", "filter": [ "lowercase" ] } } } }, ) print(resp)
response = client.indices.create( index: 'pattern_example', body: { settings: { analysis: { tokenizer: { split_on_non_word: { type: 'pattern', pattern: '\\W+' } }, analyzer: { rebuilt_pattern: { tokenizer: 'split_on_non_word', filter: [ 'lowercase' ] } } } } } ) puts response
const response = await client.indices.create({ index: "pattern_example", settings: { analysis: { tokenizer: { split_on_non_word: { type: "pattern", pattern: "\\W+", }, }, analyzer: { rebuilt_pattern: { tokenizer: "split_on_non_word", filter: ["lowercase"], }, }, }, }, }); console.log(response);